Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
1. а)= а² - 6а - 3а - 18= а² - 9а - 18
б)= b³ + 3b² - 8b - 2b² - 6b + 16 =b³ + b² - 14b + 16
в)= 30х² + 20ху - 6ху + 4у² = 30х² + 14ху + 4у²
2. а)= (с+6) (d-5)
б)= b (x-y) + 4 (x-y) = (b+4) (x-y)
3. = c³ + 3c²d + cd² + 3d³ - 3c²d + cd²= c³ + 2cd² + 3d³
4. (y - 5) (y +7) = у(у+2) - 35
у² + 7у - 5у - 35 = у² + 2у - 35
у² + 2у -35 = у² + 2у - 35
0=0 ч.т.д
5. пусть длинна будет х см. тогда ширина у см.
составим систему
х - 6 = у
(х+5) (у +2) = 110 +ху
х - 6= у
(х+5) (х-6+2)=110+х(х-6)
х-6=у
х² - 4х + 5х - 20 = 110+х²-6х
х-6=у
х²-4х+5х-х²+6х = 110+20
х-6=у
7х=130
х=19
у=13
ответ: ширина 13 см. длинна 19 см
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше