Пусть х км проехал до точки встречи один из велосипедистов, тогда другой велосипедист до точки встречи успел проехать (50 - х) км. Скорость одного велосипедиста х/2 км/ч, скорость другого - (50-х)/2 км/ч. Время, затраченное одним велосипедистом на весь путь часов, другим велосипедистом - ч. Разница во времени часа. Составляем уравнение по условию задачи: После преобразований останется уравнение . Корни уравнения 150 и 20. Первый корень не подходит, т.к. превышает расстояние между селами. Скорости: одного велосипедиста 20 : 2 = 10 км/ч, другого (50 - 20) : 2 = 15 км/ч.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Скорость одного велосипедиста х/2 км/ч, скорость другого - (50-х)/2 км/ч.
Время, затраченное одним велосипедистом на весь путь часов, другим велосипедистом - ч. Разница во времени часа.
Составляем уравнение по условию задачи:
После преобразований останется уравнение .
Корни уравнения 150 и 20. Первый корень не подходит, т.к. превышает расстояние между селами.
Скорости: одного велосипедиста 20 : 2 = 10 км/ч, другого (50 - 20) : 2 = 15 км/ч.