Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
task/29542049 arctg (1/p) +arctg(1/q) = π/4 ; p ∈ ℕ , q ∈ ℕ
* * * arctg (1/p) = α; arctg(1/q)=β ; tg( α+β)=( tgα+tgβ) / (1 - tgα*tgβ) * * *
* * * - π/2 < arctg(a) < π/2 и tg (arctg(a) ) =a * * *
arctg (1/p) +arctg(1/q) = π/4 ⇔ tg( arctg (1/p) +arctg(1/q) ) =tg(π/4)⇔
( tg(arctg (1/p) +tg( arctg(1/q) ) / ( 1 - tg(arctg (1/p) *tg( arctg(1/q) ) = 1⇔
( 1/p+ 1/q ) / (1- 1/pq ) =1 ⇔ ( p+ q ) / (pq - 1) =1 || pq ≠1 || ⇔ p+ q = pq - 1 ⇔
pq - p - q +1 =2 ⇔ (p -1)(q-1) = 2. Если p и q натуральные ,то
{ p - 1 = 1 ; q -1 =2 либо { p - 1 = 2 ; q -1 = 1.
{ p =2 ; q =3 либо { p = 3 ; q = 2
* * *нормально: исходное выражение симметрично относительно p и q* * *
ответ: (2;3) , (3;2) .
УДАЧИ !
Даны координаты параллелограмма: А(1; -2; 3), В(3; 2; 1), D(6; 4; 4).
1) Так как сторона DС параллельна и равна АВ, то приращения координат по осям "x", "у" и "z" у них равны.
АВ: Δx = 3-1 = 2, Δу = 2-(-2) = 4, Δz = 1-3 = -2.
Отсюда х(С) = x(D) + Δx = 6+2 = 8,
у(С) = у(D) + Δу = 4 + 4 = 8.
z(C) = z(D) + Δz = 4 - 2 = 2.
ответ: С(8; 8; 2).
2) АВ = (2; 4; -2).
|AB| = √(4 + 16 + 4) = √24 = 2√6.
AD = (6-1; 4-(-2); 4-3) = (5; 6; 1).
|AD| = √(25 + 36 + 1) = √62.
3) cos A = (2*5 + 4*6 + (-2)*1)/(2√6*√62) = 32/(4√93) = 8√93/93 = 0,829561356.
4) S(ABCD) = AB*AD*sin A = 2√6*√62*0,558415577 = 21,54065922.
task/29542049 arctg (1/p) +arctg(1/q) = π/4 ; p ∈ ℕ , q ∈ ℕ
* * * arctg (1/p) = α; arctg(1/q)=β ; tg( α+β)=( tgα+tgβ) / (1 - tgα*tgβ) * * *
* * * - π/2 < arctg(a) < π/2 и tg (arctg(a) ) =a * * *
arctg (1/p) +arctg(1/q) = π/4 ⇔ tg( arctg (1/p) +arctg(1/q) ) =tg(π/4)⇔
( tg(arctg (1/p) +tg( arctg(1/q) ) / ( 1 - tg(arctg (1/p) *tg( arctg(1/q) ) = 1⇔
( 1/p+ 1/q ) / (1- 1/pq ) =1 ⇔ ( p+ q ) / (pq - 1) =1 || pq ≠1 || ⇔ p+ q = pq - 1 ⇔
pq - p - q +1 =2 ⇔ (p -1)(q-1) = 2. Если p и q натуральные ,то
{ p - 1 = 1 ; q -1 =2 либо { p - 1 = 2 ; q -1 = 1.
{ p =2 ; q =3 либо { p = 3 ; q = 2
* * *нормально: исходное выражение симметрично относительно p и q* * *
ответ: (2;3) , (3;2) .
УДАЧИ !