1) Простейший конденсатор-это плоский конденсатор. Плоский конденсатор состоит из двух параллельных плоских проводников-пластинок, которые называются обкладками конденсатора. Поэтому если мы увеличиваем диэлектрическую проницаемость (диэлектрик) в определенное количество раз, то, следовательно, емкость плоского конденсатора увеличится в тоже количество раз⇒что плоский конденсатор увеличится в 2,1 раз
1) Простейший конденсатор-это плоский конденсатор. Плоский конденсатор состоит из двух параллельных плоских проводников-пластинок, которые называются обкладками конденсатора. Поэтому если мы увеличиваем диэлектрическую проницаемость (диэлектрик) в определенное количество раз, то, следовательно, емкость плоского конденсатора увеличится в тоже количество раз⇒что плоский конденсатор увеличится в 2,1 раз
2) Дано: Формула: Решение:
U=24В С=q/U С=3*10∧-5Кл/24В=
q=30мкКл= =0,125*10∧-5Ф=1,25мкФ
=3*10∧-5Кл
ответ: С=1,25мкФ
C-?мкФ
3) Дано: Формула: Решение:
С=40нФ= С=q/U⇒ q=4*10∧-8Ф*30В=
=4*10∧-8Ф q=CU =120*10∧-8Кл=1,2мкКл
U=30В
ответ: q=1,2мкКл
q-?мкКл
(2 + x) (14 − x) = (2x − 8) (1 + 7x)
Чтобы умножить 2+x на 14−x, используйте свойство дистрибутивности и приведение подобных.
28 + 12x − x² = (2x − 8) (1 + 7x)
Чтобы умножить 2x−8 на 1+7x, используйте свойство дистрибутивности и приведение подобных.
28 + 12x − x² = −54x + 14x² − 8
Прибавьте 54x к обеим частям.
28 + 12x − x² + 54x = 14x² − 8
Объедините 12x и 54x, чтобы получить 66x.
28 + 66x − x² = 14x² − 8
Вычтите 14x² из обеих частей уравнения.
28 + 66x − x² − 14x² = −8
Объедините −x² и −14x² , чтобы получить −15x².
28 + 66x − 15x² = −8
Прибавьте 8 к обеим частям.
28 + 66x − 15x² + 8 = 0
Чтобы вычислить 36, сложите 28 и 8.
36 + 66x − 15x² = 0
Все уравнения вида ax² + bx + c = 0 можно решить с формулы корней квадратного уравнения
Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
−15x + 66x + 36 = 0
Данное уравнение имеет стандартный вид ax² +bx+c=0. Подставьте −15 вместо a, 66 вместо b и 36 вместо c в формуле корней квадратного уравнения
x₁ =
x₂ =
ответ: