Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится число 10Y + X и отношение полученного числа к N равно 3,4, т.е. 10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY 10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4 10Y + X = 34X + 3,4Y 10Y - 3,4Y= 34X - X 6,6Y = 33X 6,6Y = 33X X = 0,2Y подставим Х в первое уравнение 10* 0,2Y + Y = 3Y*0,2Y 2Y + Y = 0,6Y^2 0,6Y^2 - 3Y = 0 Y( 0,6Y - 3) = 0 Y = 0 или 0,6Y - 3 =0 0,6Y = 3 Y = 5
если Y = 0 то Х =0 ( не подходит) если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
Пересечение двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и множеству В одновременно. Для начала найдем НОК для чисел 12 и 18. НОК (12;18)=2*2*3*3=36 - т.е. числа кратные 36 и будут пересечением A∩B={36; 72;...; 36n}
Объединением двух множеств A и B называется множество, содержащее все такие и только такие элементы, которые являются элементами хотя бы одного из этих множеств. A∪B={12; 18; 24; 36; 48; 54; 60}
По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится
число 10Y + X и отношение полученного числа к N равно 3,4, т.е.
10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY
10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4
10Y + X = 34X + 3,4Y
10Y - 3,4Y= 34X - X
6,6Y = 33X
6,6Y = 33X
X = 0,2Y
подставим Х в первое уравнение
10* 0,2Y + Y = 3Y*0,2Y
2Y + Y = 0,6Y^2
0,6Y^2 - 3Y = 0
Y( 0,6Y - 3) = 0
Y = 0 или 0,6Y - 3 =0
0,6Y = 3
Y = 5
если Y = 0 то Х =0 ( не подходит)
если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
ОТВЕТ: 15
B={18; 36; 54; ; 18n}
Пересечение двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и множеству В одновременно.
Для начала найдем НОК для чисел 12 и 18.
НОК (12;18)=2*2*3*3=36 - т.е. числа кратные 36 и будут пересечением
A∩B={36; 72;...; 36n}
Объединением двух множеств A и B называется множество, содержащее все такие и только такие элементы, которые являются элементами хотя бы одного из этих множеств.
A∪B={12; 18; 24; 36; 48; 54; 60}