В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rustie
rustie
25.09.2020 23:41 •  Алгебра

Решите алгебраического сложения систему координат:
2х2 + у2 = 9
у2 - х2 + 3 = 0

Показать ответ
Ответ:
СофаСтар2
СофаСтар2
15.10.2020 19:40

Решение системы уравнений (-2; -1);  (2; 1).

Объяснение:

Решите алгебраического сложения систему уравнений:

2х² + у² = 9

у² - х² + 3 = 0

Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.

В данной системе нужно второе уравнение умножить на 2:

2х² + у² = 9

2у² - 2х² = -6

Складываем уравнения:

2х² - 2х² + у² + 2у² = 9 - 6

3у² = 3

у² = 1

у=±√1

у=±1;

Теперь подставить  значение у в любое из двух уравнений системы и вычислить  х:

2х² + у² = 9

2х² = 9 - у²

2х² = 9 - 1

2х² = 8

х² = 4

х = ±√4

х=±2

Решение системы уравнений (-2; -1);  (2; 1).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота