Коротко о правиле Лопиталя (без точных формулировок): Правило Лопиталя применяется при вычислении пределов для раскрытия неопределенностей [0/0] и [бесконечность/бесконечность]. Для того, чтобы раскрыть указанные неопределенности надо найти ОТДЕЛЬНО производную числителя и ОТДЕЛЬНО производную знаменателя и после посчитать полученный предел (если нужно, предварительно, сделав преобразования). Если после применения правила Лопиталя вновь получили неопределенность [0/0], [бесконечность/бесконечность], то применяем правило Лопиталя еще раз до тех пор пока неопределенность не уйдет (см. пример 2).
Замечание к данным пределам: Второй предел вычислять с правила Лопиталя не рационально.
чтобы построить графики функций, вместо а подставим различные значения
а=0
тогда функция получается такая: y=x²
а=1
функция y=(x-3)²+2
а=2
функция y=(x-6)²+4
а=-1
функция y=(x+3)²-2
а=-2
функция y=(x+6)²-4
Можно взять 2 или 3 функции, но пусть будет больше для ясности
Теперь построим графики этих функций. Все они - параболы, т.к. x².
Прикрепляю их как фото. Если все графики построить на одной координатной плоскости, то можно увидеть, что они располагаются на одной прямой. Точки этой прямой
х: 0; 3; 6; -3; -6
у: 0; 2; 4; -2; -4
Эти точки соответствуют вершинам пяти взятых мной парабол.
Прямая - это график линейной функции y=kx. k - это коэффициент, который нужно найти. поставляем любую точку из таблицы выше (не (0;0)), например (3;2). х=3, у=2, получаем уравнение 2=k*3, k=2/3. график прямой линии и графики всех парабол прикреплен на втором фото. функция графика прямой y = 2/3 * x
Дело в том, что вместо а можно подставить абсолютно любое число. Хоть -100, хоть 0,2973, вообще любое. И какое бы число ни было, вершина параболы будет лежать на этой прямой
Замечание к данным пределам: Второй предел вычислять с правила Лопиталя не рационально.
Объяснение:
чтобы построить графики функций, вместо а подставим различные значения
а=0
тогда функция получается такая: y=x²
а=1
функция y=(x-3)²+2
а=2
функция y=(x-6)²+4
а=-1
функция y=(x+3)²-2
а=-2
функция y=(x+6)²-4
Можно взять 2 или 3 функции, но пусть будет больше для ясности
Теперь построим графики этих функций. Все они - параболы, т.к. x².
Прикрепляю их как фото. Если все графики построить на одной координатной плоскости, то можно увидеть, что они располагаются на одной прямой. Точки этой прямой
х: 0; 3; 6; -3; -6
у: 0; 2; 4; -2; -4
Эти точки соответствуют вершинам пяти взятых мной парабол.
Прямая - это график линейной функции y=kx. k - это коэффициент, который нужно найти. поставляем любую точку из таблицы выше (не (0;0)), например (3;2). х=3, у=2, получаем уравнение 2=k*3, k=2/3. график прямой линии и графики всех парабол прикреплен на втором фото. функция графика прямой y = 2/3 * x
Дело в том, что вместо а можно подставить абсолютно любое число. Хоть -100, хоть 0,2973, вообще любое. И какое бы число ни было, вершина параболы будет лежать на этой прямой