Упростим выражение, учитывая, что (x-11)² можно раскрыть по формуле квадрата разности (a-b)²=a²-2ab+b², а (x-7)(x-9) - перемножив содержимое первой скобки на содержимое второй, запишем результат:
x²-22x+121=x²-9x-7x+63
Переносим неизвестные влево, а известные вправо, при переносе меняя знак на противоположный:
x²-22x-x²+9x+7x=63-121
x² и -x² сокращаются, тогда получим:
-22x+9x+7x=63-121
-6x=-58
x=58/6=29/3=9 2/3 (девять целых, две третьих)
ответ: 9 2/3
Уравнение 2.
(x-4)(x+4)-(x+6)²=-16
Упростим выражение, стоит учесть, что (x-4)(x+4) мы можем раскрыть по формуле сокращённого умножения (a-b)(a+b)=a²-b², вторую скобку раскрываем по формуле квадрата суммы (a+b)²=a²+2ab+b²
x²-16-(x²+12x+36)= -16
Т.к. перед скобкой стоит знак "минус", то при раскрытии мы меняем знаки на противоположные:
x²-16-x²-12x-36= -16
x² и -x² сокращаются, тогда получим:
-16-12x-36= -16
Переносим известные в правую часть, при переносе меняя знак на противоположный:
-12x= -16+16+36
-16 и 16 сокращаются, тогда получаем:
-12x=36
x= 36 : (-12)
x= -3
ответ: -3
Уравнение 3.
(1-3x)^2-x(9x-2)=5
Первую скобку раскрываем аналогично как в первом уравнении, а x(9x-2) раскрываем путём умножения -x на содержимое скобки, получим:
1-6x+9x²-9x²+2x=5
9x² и -9x² сокращаются, тогда получим:
1-6x+2x=5
Переносим известные в правую часть, при переносе меняя знак на противоположный:
Пусть x км/ч - cобственная скорость катера.
v км/ч - скорость течения реки
Тогда
(x+v) км/ч - скорость катера по течению
(x-v) км/ч - скорость катера против течения
Cистема уравнений
{44(x-v)+3(x-v)(x+v)=90(x+v)
{66(x-v)+54(x+v)=6(x-v)(x+v)
{3x²-3v²=46x+134v
{6x^2-6v^2=120x-12v
2·(46х+134v)=120х-12v
28x=280v
x=10v
собственная скорость катера в 10 раз больше скорости течения реки
Подставляем в первое уравнение:
44·(10v-v)+3·(10v-v)·(10v+v)=90·(10v+v);
44·9v+3·9v·11v=90·11v
Сокращаем на 99v
4+3v=10
3v=6
v=2
x=20
О т в е т. 20 км в час - собственная скорость катера.
28:2=14 часов понадобится плоту, чтобы проплыть по реке 28 км
Уравнение 1.
(x-11)²=(x-7)(x-9)
Упростим выражение, учитывая, что (x-11)² можно раскрыть по формуле квадрата разности (a-b)²=a²-2ab+b², а (x-7)(x-9) - перемножив содержимое первой скобки на содержимое второй, запишем результат:
x²-22x+121=x²-9x-7x+63
Переносим неизвестные влево, а известные вправо, при переносе меняя знак на противоположный:
x²-22x-x²+9x+7x=63-121
x² и -x² сокращаются, тогда получим:
-22x+9x+7x=63-121
-6x=-58
x=58/6=29/3=9 2/3 (девять целых, две третьих)
ответ: 9 2/3
Уравнение 2.
(x-4)(x+4)-(x+6)²=-16
Упростим выражение, стоит учесть, что (x-4)(x+4) мы можем раскрыть по формуле сокращённого умножения (a-b)(a+b)=a²-b², вторую скобку раскрываем по формуле квадрата суммы (a+b)²=a²+2ab+b²
x²-16-(x²+12x+36)= -16
Т.к. перед скобкой стоит знак "минус", то при раскрытии мы меняем знаки на противоположные:
x²-16-x²-12x-36= -16
x² и -x² сокращаются, тогда получим:
-16-12x-36= -16
Переносим известные в правую часть, при переносе меняя знак на противоположный:
-12x= -16+16+36
-16 и 16 сокращаются, тогда получаем:
-12x=36
x= 36 : (-12)
x= -3
ответ: -3
Уравнение 3.
(1-3x)^2-x(9x-2)=5
Первую скобку раскрываем аналогично как в первом уравнении, а x(9x-2) раскрываем путём умножения -x на содержимое скобки, получим:
1-6x+9x²-9x²+2x=5
9x² и -9x² сокращаются, тогда получим:
1-6x+2x=5
Переносим известные в правую часть, при переносе меняя знак на противоположный:
-6x+2x=5-1
-4x=4
x= -1
ответ: -1