В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Sulifat
Sulifat
24.08.2022 08:11 •  Алгебра

Решите, , данное , описав как можно подробнее решение. при каких значениях параметра а система имеет решение: 6a-x^2+2xy=y^2 кор из(2x+3y) + 7a=0

Показать ответ
Ответ:
юля2720
юля2720
24.05.2020 16:22

Из первого уравнения:  x^2-2xy+y^2=6a,  (x-y)^2=6a (квадрат любого числа всегда >=0);    отсюда: a>=0,

из второго уравнения:  кор из(2x+3y)=-7a (так как по определению арифметический квадратный корень >=0),  отсюда: a<=0 (чтобы произведение -7а было >=0)

Совместив a>=0 и a<=0, получим а=0

0,0(0 оценок)
Ответ:
Лuзуня
Лuзуня
24.05.2020 16:22

Рассмотрим первое уравнение:

6a-x²+2xy=y²

6a-(x²-2xy+y²)=0   свернем квадрат разности

6a-(x-y)²=0

(x-y)²=6a   левая часть всегда положительна a>=0

Рассмотрим второе уравнение:

√(2x+3y) + 7a = 0

√(2x+3y) = -7а

 2х+3у>=0

 a <= 0

Система имеет решение при а=0

 

 

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота