Запишем условия: Ширина нам неизвестна, поэтому её мы возьмём за 'X' Длина на 10 больше ширины, значит на 10 больше 'X' Ширина - x Длина - x+10 S(площадь)=24см Чтобы решить эту задачу, составим простое уравнение. S(площадь)=длина*ширина 24 = (x+10)*x 24=x^2+10X x^2+10x-24=0 D=b^2-4ac=196
x1=-12 x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
Двойное неравенство решается как система неравенств:
5 < -3x
-3x < 11
Первое неравенство:
5 < -3x
3х > -5
x < -5/3 (≈ -1,7)
x∈(-∞, -5/3), интервал решений первого неравенства.
Неравенство строгое, скобки круглые.
Второе неравенство:
-3x < 11
3х> -11
x > -11/3 (≈ -3,7)
x∈( -11/3, +∞), интервал решений второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Ширина нам неизвестна, поэтому её мы возьмём за 'X'
Длина на 10 больше ширины, значит на 10 больше 'X'
Ширина - x
Длина - x+10
S(площадь)=24см
Чтобы решить эту задачу, составим простое уравнение.
S(площадь)=длина*ширина
24 = (x+10)*x
24=x^2+10X
x^2+10x-24=0
D=b^2-4ac=196
x1=-12
x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
X=2 (Ширина)
X+10=2+10=12 (Длина)
Ширина - 2 см
Длина - 12 см
х∈ (-11/3, -5/3)
Объяснение:
Решить двойное неравенство:
5 < -3x < 11
Двойное неравенство решается как система неравенств:
5 < -3x
-3x < 11
Первое неравенство:
5 < -3x
3х > -5
x < -5/3 (≈ -1,7)
x∈(-∞, -5/3), интервал решений первого неравенства.
Неравенство строгое, скобки круглые.
Второе неравенство:
-3x < 11
3х> -11
x > -11/3 (≈ -3,7)
x∈( -11/3, +∞), интервал решений второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.
Чертим числовую ось, отмечаем значения -11/3 (≈ -3,7), -5/3 (≈ -1,7).
Штриховка по первому неравенству от -5/3 влево до - бесконечности.
По второму неравенству штриховка от -11/3 вправо до + бесконечности.
Пересечение х∈ (-11/3, -5/3), это и есть решение системы неравенств.