В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gsgshhshsbababa
gsgshhshsbababa
19.05.2022 19:12 •  Алгебра

Решите : Доказать перпендикулярность прямых.


Решите : Доказать перпендикулярность прямых.

Показать ответ
Ответ:
Deniza06
Deniza06
03.12.2020 14:13

Есть формула \displaystyle \int UdV= UV - \int VdU

Но напрямую я её использовать не очень люблю.

Проще использовать такой подход (он, конечно, на формуле основан)

1. "Разрезать" функцию на 2 части: одну, которую будем дифференцировать, а другую - интегрировать. Понятно, что это разбиение часто основывается на том, какую функцию проще интегрировать, так как продифференцировать можно любую (но иногда, как во 2-м примере, будем смотреть, какую функцию лучше дифференцировать).

2. В столбик написать обе получившиеся функции (ту, которую интегрируем, с дифференциалом запишем, естественно). Отчертить большой чертой и справа напротив каждой функции написать результат того, что мы с ней делаем (в одном случае результат интегрирования, а в другом дифференцирования).

3. А дальше итоговый интеграл будет равен "функция на функцию" (это будет крест накрест, где нет дифференциалов) минус интеграл от произведения функций справа.

Попробую на примере показать:

а) есть интеграл \displaystyle \int x lnx dx

Здесь удобнее интегрировать логарифм, а дифференцировать x

\displaystyle \left.\begin{matrix}lnx\\ xdx \end{matrix}\right| \begin{matrix}\frac{dx}{x}\\ \frac{x^2}{2} \end{matrix}

Ну вот как-то так. И теперь сам интеграл:

\displaystyle \int xlnxdx = \frac{x^2}{2}\cdot lnx-\int \frac{x^2}{2}\cdot \frac{1}{x}dx=\frac{x^2}{2}\cdot lnx-\int \frac{x}{2}dx=\\=\frac{x^2}{2}\cdot lnx-\frac{x^2}{4}+C

Надеюсь, что стало понятнее.

б) здесь придется интеграл по частям брать аж 2 раза, но ничего страшного, возьмем.

Сам интеграл \displaystyle \int(x^2-2x)sinxdx

Здесь понятно, что тригонометрия будет давать тригонометрию что при интегрировании, что при дифференцировании, а вот многочлен уже при втором дифференцировании даст константу, так что его и будем дифференцировать.

\displaystyle \left.\begin{matrix}x^2-2x\\ sinxdx \end{matrix}\right| \begin{matrix}(2x-2)dx\\ -cosx \end{matrix}

\displaystyle \int (x^2-2x)sinxdx = (x^2-2x)(-cosx) - \int (2x-2)(-cosx)dx = \\= -(x^2-2x)\cdot cosx + \int (2x-2)cosxdx

Надо лишь решить ещё один интеграл, причем абсолютно так же.

\displaystyle \left.\begin{matrix}2x-2\\ cosxdx \end{matrix}\right| \begin{matrix}2dx\\ sinx \end{matrix}

\displaystyle \int(2x-2)cosxdx = (2x-2)\cdot sinx - \int 2sinxdx = \\ = (2x-2)\cdot sinx+2\cdot cosx + C

Ну и соберем все теперь:

\displaystyle \int(x^2-2x)sinxdx = -(x^2-2x)\cdot cosx + (2x-2)\cdot sinx + 2\cdot cosx + C

0,0(0 оценок)
Ответ:
Maksikar
Maksikar
16.10.2021 14:11

Диаметр круга - это хорда, которая соединяет две точки его окружности так, что проходит через центр круга.

Дерево 1 - это точка на окружности круга, а дерево 2 - центр окружности. Если диаметр круга = 200м, а длина верёвки чуть больше 200м, то, натянув верёвку с одного берега на другой (можно обойти озеро кругом и прицепить верёвку с другого конца), человек может перебраться по ней, например, перемещая руки одну за другой. Он, конечно, вымокнет, но цель будет достигнута. Если хочется этого избежать, можно закрепить верёвку повыше, чтобы добраться на вису.

Факт в том, что верёвка длиннее диаметра озера и её можно натянуть с одного конца озера на другой, чтобы она как раз через центр озера - дерева 2.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота