РЕШИТЕ Две меньшие стороны прямоугольной трапеции равны. Три различные стороны трапеции образуют арифметическую прогрессию. Периметр трапеции равен 18 дм. Какая из сторон трапеции является наибольшей? Найди все стороны трапеции.
ответ (пиши стороны трапеции в возрастающем порядке):
первая сторона равна
дм.
Вторая сторона равна
дм.
Третья сторона равна
дм.
Четвёртая сторона равна
дм.
Дополнительный во чему равна разность? d=
дм.
2. Какие соотношения используются в решении задачи?
Теорема Пифагора
Теорема косинусов
Неравенство треугольника
Формула радиуса вписанной окружности
3. Если a, b, c — стороны треугольника, то какое неравенство является верным?
a+b>c
a+b a+b≤c
a+b≥c
4. В данной задаче наибольшей стороной трапеции является:
боковая сторона
сторона основания
50-29,75=20,25 (р)-общая сумма,на которую была снидена цена
предположим,что в первый раз сумма скидки составила х(руб), во второй у(руб),всего х+у=20,25
первый раз снизили товар на z%, во второй на 2z%
x=50*z/100=z/2 руб(сумма скидки в первой раз)
50-z/2руб-стоимость товара после первой уценки
у=(50-z)/2*2z/100=z*(100-z)/100 (сумма скидки во второй раз)
подставим найденные х и у в уравнение z/2+z*(100-z)/100=20,25
после приведения подобных получаем уравнение z²-150z+2025=0
находим корни квадратного уравнения и полуяаем z1=15 ;z2=135
отсюда следует что первый раз товар уценили на 15%, второй на 30%
первый раз на 7,5 руб , второй на 12,75 руб ,в сумме на это даёт 20,25 руб т.е после уценки на 20,25руб товар стал стоит 29,75руб
Пусть раствор в первом сосуде имеет x% концентрацию кислоты, а во втором y%. Найдём массу кислоты в обоих сосудах, составив пропорции. 10 кг - 100% z кг - x% z = 10 * x/100 = 0,1x кг в первом сосуде 16 * y/100 = 0,16y кг кислоты во втором сосуде Если слить их вместе, то получится 26 кг раствора с содержанием кислоты 55%. Составим пропорцию и найдём количество кислоты в 10 + 16 кг раствора. 26 кг - 100% z кг - 55% z = 26 * 55/100 = 14,3 кг 0,1x + 0,16y = 14,3 Найдём массу кислоты в 10 литрах раствора, содержащегося во втором сосуде. 0,16y - в 16 кг z кг - в 10 кг z = 0,16y * 10/16 = 0,1y кг Таким образом, если слить равные массы этих растворов (каждого по 10 литров), то полученная масса раствора составит 20 кг, а кислоты в нём будет 0,1x + 0,1y килограммов. 20 кг - это 100% z кг - это 61% z = 20 * 61/100 = 12,2 кг Решим полученную систему уравнений методом сложения, умножив второе уравнение на (- 1) и сложив его с первым. 0,1x + 0,16y = 14,3 0,1x + 0,1y = 12,2 0,1x - 0,1x + 0,16y - 0,1y = 14,3 - 12,2 0,06y = 2,1 y = 2,1 : 0,06 = 35 x = (14,3 - 35 * 0,16) * 10 = 87 Найдём содержание кислоты в первом 87%-ном растворе. 0,1 * 87 = 8,7 кг кислоты ответ: в первом растворе содержится 8,7 килограммов кислоты.
Объяснение:
сердечко )