Совместная производительность двух кранов=1/6
Пусть 1/x+5—это производительность второго крана, тогда производительность первого=(1/x)
Составим уравнение:
1/x+1/x+5=1/6
6x+30+6x-5x^2-5x/(6x^2+30x)=0
Это выражение равно нулю только в том случае , если числитель равен нулю, так как знаменатель не может равняться нулю( на ноль делить нельзя)
x^2-7x-30=0
Найдём дискриминант:
D=49+120=13^2
Найдём корни уравнения:
x1=(7+13)/2=10
x2=(7-13)/2<0( посторонний корень, так как время не может быть отрицательным)
Время первого-10 часов
Время второго-10+5=15 часов
ответ: 10( время первого) и 15( время второго) часов соответственно
Объяснение:
y= x² - 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
A)Найти координаты вершины параболы:
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
B)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
C)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
Д)Ось симметрии = -b/2a X = 4/2 = 2
Е)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
Совместная производительность двух кранов=1/6
Пусть 1/x+5—это производительность второго крана, тогда производительность первого=(1/x)
Составим уравнение:
1/x+1/x+5=1/6
6x+30+6x-5x^2-5x/(6x^2+30x)=0
Это выражение равно нулю только в том случае , если числитель равен нулю, так как знаменатель не может равняться нулю( на ноль делить нельзя)
x^2-7x-30=0
Найдём дискриминант:
D=49+120=13^2
Найдём корни уравнения:
x1=(7+13)/2=10
x2=(7-13)/2<0( посторонний корень, так как время не может быть отрицательным)
Время первого-10 часов
Время второго-10+5=15 часов
ответ: 10( время первого) и 15( время второго) часов соответственно
Объяснение:
y= x² - 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
A)Найти координаты вершины параболы:
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
B)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
C)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
Д)Ось симметрии = -b/2a X = 4/2 = 2
Е)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)