1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
Площадь уменьшится. к примеру возьмём прямоугольник с длинной 4 , а шириной 3. его площадь s=ab ( площадь равна длинна умножить на ширину ),площадь данного прямоугольника будет равна 3 * 4 = 12. если увеличить длину на 10% , то его длинна будет равна 4 + 10% от 4(10% от 4 = 4 разделить на 100 и умножить на 10 и это равно 0,4 или четыре десятых) следовательно его длинна будет равна 4,4. а так как ширина уменьшилась на 20 % то она будет равна 3 - 20% от 3(20% от 3 равно 3 разделить на 100 и умножить на 20 или просто 3 разделить на 5. 20% от 3 равно 0,6) следовательно его ширина будет равна 3 - 0,6 = 2,4. теперь подсчитаем площадь(2.4 умножить на 4.4 =10,56 ) 10,56 < 12 следовательно при < < длину увеличить на 10%, а ширину уменьшить на 20% в прямоугольнике> > площадь уменьшится
(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0
2) Найдем нули числителя и знаменателя:
Числитель: -Все скобки приравниваем к нулю:
х∧2+2х+1=0
D<0, f(x)>0 х-любое число
x-3=0
x=3
x+2=0
x=-2
Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности),
Знаменатель: х∧2+2х-3 не равно 0
D=16
x=-3
x=1
Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности)
Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)