Пробное ГИА, задание С5?;) Если есть ещё какие-нибудь вопросы по этой работе в личку. Дано : Треугольник ABC AM, BN - медианы Д-ть: Треугольник AOB подобен треугольнику MON Решение: Нужно произвести дополнительное построение и провести отрезок MN ( Для того, чтоб получить треугольник MON, который нам нужен для решения задачи) 1)ABC - треугольник AM,BN - медианы O- точка пересечения Из этого следует, что AO\OM = 2\1 ; BO\ON = 2\1 ( По теореме о медианах треугольника. Медины точкой пересечения делятся на два отрезка, которые относятся как 2 к 1 ) 2)Треугольники AOB и MON AO\OM = 2\1 BO\ON = 2\1 Углы BOA и MON - вертикальные Из этого следует, что треугольники подобны по второму признаку ( Две сходственные стороны подобны, а угол между ними равен) Что и требовалось доказать.
Это очень просто. Если в отбрасываемой части самая левая цифра 5 или больше, то к округленному числу прибавляем 1 к правому разряду. Если цифра от 0 до 4, то округляемая часть не меняется. Например, у нас есть число Пи=3,141592653589..., которое надо округлить до десятитысячных, то есть до 4-го знака после запятой. Смотрим 5-ый знак, самый левый в отбрасываемой части. Это 9. Значит, надо к 4-ому знаку 5 прибавить 1. Получится 3,1416. А если надо округлить до сотых (до 2-го знака), то смотрим 3-ий знак. Это 1. Значит, вся правая часть отбрасывается и остается 3,14. Вот и всё.
Пробное ГИА, задание С5?;) Если есть ещё какие-нибудь вопросы по этой работе в личку.
Дано :
Треугольник ABC
AM, BN - медианы
Д-ть:
Треугольник AOB подобен треугольнику MON
Решение:
Нужно произвести дополнительное построение и провести отрезок MN ( Для того, чтоб получить треугольник MON, который нам нужен для решения задачи)
1)ABC - треугольник
AM,BN - медианы
O- точка пересечения
Из этого следует, что AO\OM = 2\1 ; BO\ON = 2\1 ( По теореме о медианах треугольника. Медины точкой пересечения делятся на два отрезка, которые относятся как 2 к 1 )
2)Треугольники AOB и MON
AO\OM = 2\1
BO\ON = 2\1
Углы BOA и MON - вертикальные
Из этого следует, что треугольники подобны по второму признаку ( Две сходственные стороны подобны, а угол между ними равен)
Что и требовалось доказать.
Если цифра от 0 до 4, то округляемая часть не меняется.
Например, у нас есть число Пи=3,141592653589..., которое надо округлить до десятитысячных, то есть до 4-го знака после запятой.
Смотрим 5-ый знак, самый левый в отбрасываемой части. Это 9.
Значит, надо к 4-ому знаку 5 прибавить 1. Получится 3,1416.
А если надо округлить до сотых (до 2-го знака), то смотрим 3-ий знак.
Это 1. Значит, вся правая часть отбрасывается и остается 3,14.
Вот и всё.