Из натуральных чисел от 1 до 321 включительно исключите все числа, делящиеся на 4, но не делящиеся на 5, и все числа, делящиеся на 5, но не делящиеся на 4. Сколько чисел останется?
РЕШЕНИЕ: Число чисел делящихся на 4 равно 321/4=(округление с недостатком)=80
Число чисел делящихся на 5 равно 321/5=( округление с недостатком)=64
Число чисел делящихся и на 4 и на 5 совпадает с числом чисел делящихся на 4*5=20, и их 321/20=( округление с недостатком)=16
Если от исходного количества чисел 321 отнять число чисел, делящихся на 4, но прибавить число чисел, делящихся на 20, то в результате будут отняты только числа, делящиеся на 4, но не делящиеся на 5. По аналогии, если от остатка отнять число чисел, делящихся на 5, но прибавить число чисел, делящихся на 20, то в результате еще будут отняты только числа, делящиеся на 5, но не делящиеся на 4.
8/Задание № 1:
Из натуральных чисел от 1 до 321 включительно исключите все числа, делящиеся на 4, но не делящиеся на 5, и все числа, делящиеся на 5, но не делящиеся на 4. Сколько чисел останется?
РЕШЕНИЕ: Число чисел делящихся на 4 равно 321/4=(округление с недостатком)=80
Число чисел делящихся на 5 равно 321/5=( округление с недостатком)=64
Число чисел делящихся и на 4 и на 5 совпадает с числом чисел делящихся на 4*5=20, и их 321/20=( округление с недостатком)=16
Если от исходного количества чисел 321 отнять число чисел, делящихся на 4, но прибавить число чисел, делящихся на 20, то в результате будут отняты только числа, делящиеся на 4, но не делящиеся на 5. По аналогии, если от остатка отнять число чисел, делящихся на 5, но прибавить число чисел, делящихся на 20, то в результате еще будут отняты только числа, делящиеся на 5, но не делящиеся на 4.
321-80+16-64+16=209
ОТВЕТ: 209 чисел
1) Если произведение N(N+2) делится на 2, то они оба четные.
Но тогда одно число обязательно делится на 4, а другое только на 2.
И получается, что произведение действительно делится на 8.
ОТВЕТ: ДА
2) 1-ую пару можно выбрать из 6 мальчиков и 5 девочек, всего 6*5=30.
2-ую пару можно выбрать из 5 мальчиков и 4 девочек, всего 5*4=20.
Итого получается выбрать две пары.
ОТВЕТ: ДА
3) Числа, в которых все цифры делятся на 3 и не равны 0:
963, 936, 639, 693, 369, 396.
Из них четных только два: 936, 396
ОТВЕТ: НЕТ, всего 2 варианта.