Вспомним, что процентная концентрация или массовая доля w растворенного вещества Х в растворе - это отношение массы растворенного вещества m(Х) к массе раствора m(раствора): w = m(X) / m(раствор) Она часто задается в процентах: w = m(X) / m(раствор) * 100%
1 случай. Масса m1 кислоты в получившемся растворе: m1 = 2 w1 + 6 w2, где w1 и w2 - массовые доли кислоты в первом (2 кг) и втором (6 кг) растворе. Массовая доля w3 кислоты в получившемся растворе равна по условию 0,36. И она же равна w3 = m1 / (2 + 6) = m1 / 8 = (2 w1 + 6 w2) / 8 = 0.36 ( [2+6] в знаменателе - это масса получившегося раствора [2 кг+6 кг])
2 случай Возьмем для определенности равные массы, равные 1 кг. Масса m2 кислоты в получившемся растворе: m2 = w1 + w2 Массовая доля w4 кислоты в полученном растворе равна по условию 0,32. И она же равна w4 = m2 / 2 = (w1 + w2) / 2 = 0.32 (2 в знаменателе - это масса получившегося раствора [1 кг + 1 кг] )
Получаем систему уравнений относительно w1 и w2: (2 w1 + 6 w2) / 8 = 0.36 (w1 + w2) / 2 = 0.32
2 w1 + 6 w2 = 2.88 w1 + w2 = 0.64
Из второго уравнения w1 = 0.64 - w2 Подставляем это выражение для w1 в первое уравнение: 2 (0,64 - w2) + 6 w2 = 2.88 1.28 - 2 w2 + 6 w2 = 2.88 1.28 + 4 w2 = 2.88 4 w2 = 1.6 w2 = 0.4 = 40% Отсюда w1 = 0.64 - w2 = 0.64 - 0.4 = 0.24 = 24%
ответ: концентрация первого раствора - 24%, второго раствора - 40%
Примечание. Во втором случае можно брать не по одному килограмму, а по х килограммов раствора. Но это дела не меняет: m2 = x w1 + x w2 w4 = m2 / (x + x) = (x w1 + x w2) / 2x = x(w1 + w2) / 2x = (w1 + w2) / 2 (х + х) - это масса получившегося раствора. Как видим, х сокращается, и получаем тот же результат: w4 = (w1 + w2) / 2
1) 12sin^2 x – 20sin x + 7 = 0
D = 400 - 336 = 64
sinx = 0,5 и sinx=7/6 (не существует)
sinx=0,5
x=(-1)^n п/6 + пn
2) 3sin^2 x + 5cos x + 5 = 0
3*(1 - cos^2 x) + 5cos x + 5 = 0
3 - 3cos^2 x + 5cos x + 5 = 0
3cos^2 x - 5cos x - 8 = 0
D=25 + 96 = 121
cos x = -1 и cos x = 8/3 ( не существует)
cos x = -1
x = п + 2пn
3) 3sin^2 x + 13sin x cos x + 14cos^2 x = 0
Разделим выражение на cos^2 x:
3tg^2 x + 13tg + 14 = 0
D=169 - 168 = 1
tg x = -2 и tg x = -7/3
tg x = -2
x = -arctg2 + пn
tg x = -7/3
x = -arctg7/3 + пn
4) 3 tg x – 4ctg x + 11 = 0
3tg x - 4/tg x + 11 = 0
Умножим выражение на tg x:
3tg^2 x + 11tg x - 4 = 0
D=121 + 48 = 169
tg x = -4 и tg x = 1/3
tg x = -4
x = -arctg4 + пn
tg x = 1/3
x = arctg1/3 + пn
5,6) Я думаю, ты их неправильно написала, так как в одних случаях у тебя 2х, а в других - х.
w = m(X) / m(раствор)
Она часто задается в процентах:
w = m(X) / m(раствор) * 100%
1 случай.
Масса m1 кислоты в получившемся растворе: m1 = 2 w1 + 6 w2, где w1 и w2 - массовые доли кислоты в первом (2 кг) и втором (6 кг) растворе.
Массовая доля w3 кислоты в получившемся растворе равна по условию 0,36.
И она же равна w3 = m1 / (2 + 6) = m1 / 8 = (2 w1 + 6 w2) / 8 = 0.36
( [2+6] в знаменателе - это масса получившегося раствора [2 кг+6 кг])
2 случай
Возьмем для определенности равные массы, равные 1 кг.
Масса m2 кислоты в получившемся растворе: m2 = w1 + w2
Массовая доля w4 кислоты в полученном растворе равна по условию 0,32.
И она же равна w4 = m2 / 2 = (w1 + w2) / 2 = 0.32
(2 в знаменателе - это масса получившегося раствора [1 кг + 1 кг] )
Получаем систему уравнений относительно w1 и w2:
(2 w1 + 6 w2) / 8 = 0.36
(w1 + w2) / 2 = 0.32
2 w1 + 6 w2 = 2.88
w1 + w2 = 0.64
Из второго уравнения w1 = 0.64 - w2
Подставляем это выражение для w1 в первое уравнение:
2 (0,64 - w2) + 6 w2 = 2.88
1.28 - 2 w2 + 6 w2 = 2.88
1.28 + 4 w2 = 2.88
4 w2 = 1.6
w2 = 0.4 = 40%
Отсюда w1 = 0.64 - w2 = 0.64 - 0.4 = 0.24 = 24%
ответ: концентрация первого раствора - 24%, второго раствора - 40%
Проверка:
(2*0,24 + 6*0,4) / 8 = 0,36 = 36%
0,24 + 0,4 / 2 = 0,32 = 32%
Примечание.
Во втором случае можно брать не по одному килограмму, а по х килограммов раствора. Но это дела не меняет:
m2 = x w1 + x w2
w4 = m2 / (x + x) = (x w1 + x w2) / 2x = x(w1 + w2) / 2x = (w1 + w2) / 2
(х + х) - это масса получившегося раствора.
Как видим, х сокращается, и получаем тот же результат:
w4 = (w1 + w2) / 2