смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1 таким образом, ответ заканчивается на 1, значит это либо А, либо Д.
ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).
Вывод - правильный ответ Д
тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде. тогда, конечно, ответ А, но решается задача легко и без калькулятора: выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) = 111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111
1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1
таким образом, ответ заканчивается на 1, значит это либо А, либо Д.
ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).
Вывод - правильный ответ Д
тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде.
тогда, конечно, ответ А, но решается задача легко и без калькулятора:
выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) =
111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111