Пусть у вас есть две дроби: 2/3 и 7/8. Сначала найдем наименьшее общее делимое знаменателей данных дробей, а затем приведем обе дроби к нему. В нашем случае наименьшим общим делимым является число 24, вот к нему и будем приводить дроби.
Чтобы привести первую дробь к найденному наименьшему общего делимому, умножим числитель первой дроби на частное от деления этого делителя на числитель. В нашем случае это будет: 24/3=8. То есть числитель первой дроби необходимо умножить на 8. Аналогичным образом находим множитель для второй дроби: 24/8=3. То есть числитель второй дроби необходимо умножить на 3.
Умножаем числители дробей на полученные частные. В результате дроби получат общий знаменатель: 16/24 и 21/24.
Чтобы привести первую дробь к найденному наименьшему общего делимому, умножим числитель первой дроби на частное от деления этого делителя на числитель. В нашем случае это будет: 24/3=8. То есть числитель первой дроби необходимо умножить на 8. Аналогичным образом находим множитель для второй дроби: 24/8=3. То есть числитель второй дроби необходимо умножить на 3.
Умножаем числители дробей на полученные частные. В результате дроби получат общий знаменатель: 16/24 и 21/24.
База индукции. При n=1 утверждение справедливо.
Действительно
Гипотеза индукции. Пусть утверждение выполняется для некоторого натурального n=k, т.е. верно равенство
Индукционный переход. Докажем что тогда утверждение справедливо при n=k+1, т.е. что справедливо равенство
или переписав правую сторону равенства, предварительно упростив
используем гипотезу
Согласно принципу математической индукции данное утверждение справедливо для любого натурального n. Доказано