Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
Номер один:
1. y = x^3 - 2x^2 + 1
2. 0 = x^3 - 2x^2 + 1
1. x1 = 1- корень 5/2 , x2 = 1 , x3 = 1 + корень 5/2.
2. x1 ≈ - 0,618034 , x2 = 1 , x3 = 1,61803.
Объяснение к первому номеру:
1. Что бы найти пересечение с осью x, подставим y = 0.
2. решим уравнение относительно x.
3. Получим ответ.
Номер два:
1. y = 5 - x + 2 корень x + 2.
2. 0 = 5 - x + 2 корень x + 2.
1. x = 7 + 4 корень 2.
2. x ≈ 12,65685
Объяснение ко второму номеру:
1. Что бы найти пересечение с осью x, подставим y = 0.
2. Решим уравнение относительно x.
3. Получим ответ.
P.s
Буду рад если поставишь на мой ответ жёлтую короночку :)
Объяснение:
Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
ответ: S фигуры = 8.