Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
Задание № 1:
Если x<−8 и y<−2, то неравенство их суммы верно x+y<−10.
ответ: да
Задание № 2:
Если x>4 и y>3, то верным неравенством их произведения будет xy>12, значит, xy>7 - неверно.
ответ: нет
Задание № 3:
Сложим неравенства: 5x+y<3x+7 и 3y−4x<11−7x.
Преобразуем каждое неравенство:
1) 5x+y<3x+7 => 5x+y-3x<7 => 2x+y<7
2) 3y−4x<11−7x => 3y−4x+7x<11 => 3x+3y<11
3) А теперь их сложим:
2x+y<7
+
3x+3y<11
5x+4y< 18
Oтвет: 5x+4y<18
Задание № 4:
Неравенство 2x²+5>0 при любых значениях x верно, т.к.
x²≥0 при любых значениях x верно
5>0
Сумма неотрицательного и положительного чисел всегда положительна , т.е. 2x²+5>0 при любых значениях x.
ответ: да
Задание № 5:
Сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин больше периметра треугольника.
Это утверждение неверно, т.к. сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин меньше периметра треугольника
ответ: нет
Задание № 6:
Известно, что a>b. Расположите в порядке возрастания числа: a+7, b−4, a+3, a, b−1, b.
ответ: b−4; b−1; b; a; a+3; a+7
Задание № 7:
Если a и b - положительные числа, причем a>b, то верно неравенство a²>b².
Докажем.
a²>b²
a²-b²>0
(a+b)(a-b)>0
1) (a+b)>0 верно, т.к. по условию a и b - положительные числа, значит, их сумма положительна
2) Из условия a>b => a-b>0
3) Произведение положительных чисел тоже положительно, т.е.
(a+b)(a-b)>0 или a²>b².
ответ: да
пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые.
В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых.
Остались в левом белые, а в правом белые и черные.
Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые,
и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую.
В самом плохом случае мы вынем все 8 белых и только 9-ую черную.
Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных,
9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку.
Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.