В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MirAZdd
MirAZdd
26.02.2023 07:56 •  Алгебра

Решите х-1)(х-2)/(х+3)^2<0

х^2-1/(х+3)^2>0

х^2-х-2/х^2-5х+6<0

х^3+1/х+2<0

х^3-64/х-3>0​

Показать ответ
Ответ:
М4ш4
М4ш4
05.08.2020 06:25

для меня это самое понятное... надеюсь

Объяснение:

Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение

a(х — x1)(х — x2) = 0, (1)

где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).

Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.

Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.

ответ. Корни 1 и —2 имеют все квадратные уравнения вида

а(х — 1)(х + 2) = 0,

или

ах2 + ах — 2а = 0,

где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение

х2 + х — 2 = 0.

0,0(0 оценок)
Ответ:
Svetafun46
Svetafun46
02.04.2023 22:03

Объяснение:

\sin{x} + \sin 3x+ \sin 5x + \sin 7x \: = \\ = 4 \cos x \cos 2x \: \sin 4x

Проведем доказательство тождества следующим образом:

- проведем равносильные преобразования левой части доказываемого тождества;

- если в итоге преобразований левая часть примет ту же форму что и правая часть - тождество доказано.

Итак - левая часть:

\sin{x} + \sin 3x+ \sin 5x + \sin 7x \: = ...

Сгруппируем следующим образом:

...=(\sin{x} + \sin 7x)+ (\sin 3x + \sin 5x ) = \\ =(\sin{7x} + \sin x)+ (\sin 5x + \sin 3x ) ...

Воспользуемся формулой суммы синусов:

\small{\sin \alpha + sin \beta = 2sin( \frac{ \alpha + \beta }{2} ){\cdot}cos( \frac{ \alpha - \beta }{2})}

Поочередно сложим группы внутри скобок:

a)\:\: \sin 7x + \sin x = 2 \sin( \frac{7x {+ }x}{2} ) \cos( \frac{ 7x {-} x }{2}) = \\ = 2 \sin 4x{\cdot} \cos {3x} \\ \\ b) \:\:\: \sin 5x + \sin 3x = 2 \sin( \frac{5x {+ }3x}{2} ) {\cdot}\cos( \frac{ 5x {-} 3x }{2}) = \\ = 2 \sin 4x {\cdot}\cos x \\

Тогда вся левая часть примет вид:

\sin x + \sin 3x + \sin 5x + \sin 7x = \\ = ( \sin 7x + \sin x) + ( \sin 5x + \sin 3x) = \\ = 2{\cdot} \sin 4x{\cdot} \cos 3x + 2{\cdot} \sin 4x {\cdot} \cos x = \\ = 2{\cdot} \sin 4x {\cdot} (\cos 3x + \cos x) \\

для преобразования суммы косинусов в скобках воспользуемся такой формулой:

cos \alpha + cos \beta = 2 {\cdot}\cos ( \frac{ \alpha + \beta }{2} ) {\cdot}\cos( \frac{ \alpha - \beta }{2})

Выражение примет вид:

...= 2 \sin 4x{\cdot} (\cos 3x + \cos x) = \\ =2 {\cdot}\sin 4x{\cdot} \big(2\cos {(\tfrac{3x + x}{2})} {\cdot}\cos {(\tfrac{3x - x}{2})} \big) = \\ =2 {\cdot}\sin 4x {\cdot}2 \cos 2x {\cdot}\cos x =\\ = 4{\cdot}\sin 4x {\cdot} \cos 2x {\cdot}\cos x =\\=4{\cdot} \cos x {\cdot}\cos 2x {\cdot} \sin 4x

В результате преобразований левая часть приняла тот же вид что и правая.

Тождество доказано.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота