В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Натама
Натама
22.02.2021 02:37 •  Алгебра

Решите хотя-бы 7-9 заданий, умолю вас!

Показать ответ
Ответ:
ABI04
ABI04
07.11.2021 23:08
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи
0,0(0 оценок)
Ответ:
jamashkinpavel
jamashkinpavel
07.11.2021 23:08
A, b - катеты, c - гипотенуза
S=(1/2)ab=60;   c=13;   a^2+b=2=c^2 (Пифагор)

ab=120;  a^2+b^2=169

Добавим ко второму уравнению удвоенное первое:

a^2+2ab+b^2=409;
(a+b)^2=409;
a+b=√(409);
P=a+b+c=√(409)+13.

ответ "плохой", но что поделаешь.

Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2.
Отсюда Площадь равна (1/2)c·(c/2)=c^2/4.
В нашем случае c=13, S_(max)=169/4=42,25.
Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,

Примите мои соболезнования в связи с кончиной задачи
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота