Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
если число больше 0, и оно есть в обеих сторонах неравенства, то мы можем на него сократить без изменения знака
1. a+b>=0
a^3+b^3 >= a^b + ab^2
(a+b)(a^2-ab+b^2) >= ab(a+b) сокращаем на a+b при a+b = 0 это неравенство превращается в равенсто
a^2-ab+b^2 >= ab
a^2-2ab+b^2>=0
(a-b)^2>=0 квадрат всегда больше равен 0
2. ab>0
a/b + b/a >=2
a/b + b/a - 2 >=0
(a^2+b^2 - 2ab)/ab >=0
(a-b)^2/ab >= 0
ab>0 (a-b)^2>=0 первое по условию , второе по определению квадрата
3. ab/c + ac/b + bc/a >= a+b+c при a b c >0
(a^2b^2/abc + a^2c^2/abc + b^2c^2)/abc - abc(a+b+c)/abc >=0
знаменатель отбросим он всегда больше 0 a*b*c>0
2(a^2b^2 + a^2c^2 + b^2c^2 - a^2bc - b^2ac - c^2ab)/2 >=0
умножаем на 2 числитель и знаменатель
(a^2b^2 + a^2c^2 - 2a^2bc + a^2b^2 + b^2c^2 - 2b^2ac + a^2c^2+b^2c^2 - 2c^2ab)/2 >=0
(a^2(b^2-2bc+c^2) + b^2(a^2-2ac+c^2) + c^2(a^2-2ab+b^2))/2 >=0
(a^2(b-c)^2 + b^2(a-c)^2 + c^2(a-b)^2)/2 >=0
слева сумма квадратов деленное на положительное число, всегда больше равно 0
тогда первый может выполнить задание за S/x часов, а второй за S/y.
S/x +5=S/y
S/(x+y)=6
надо найти S/x и S/y
S/y-S/x=5
S=6x+6y
S/x =6+6y/x S/y=6+6x/y
6+6y/x-6-6x/y=5
обозначим y/x=z
6z-6/z=5
6z²-6=5z
6z²-5z-6=0
D=5²+4*6*6=169
√D=13
z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным
z₂=(5+13)/12=-18/12=3/2=1,5
S/x =6+6y/x=6+6z=6+6*1,5=6+9=15
S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10
ответ: 15 и 10 часов