В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Решите интегралы : 25 быстрее

Показать ответ
Ответ:
HaCT9I3
HaCT9I3
10.04.2021 22:38

Задание № 4:

В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?

получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17

9х+17у=79

х=1: 9+17у=79; 17у=70; у не целое

х=2: 18+17у=79; 17у=61; у не целое

х=3: 27+17у=79; 17у=52; у не целое

х=4: 36+17у=79; 17у=43; у не целое

х=5: 45+17у=79; 17у=34; у=2

х=6: 54+17у=79; 17у=25; у не целое

х=7: 63+17у=79; 17у=16; у<1

значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок

ответ: 18

0,0(0 оценок)
Ответ:
Bobskromnaysh12
Bobskromnaysh12
10.04.2021 22:38

7/Задание № 1:

Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?

РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.

10a+b=7a+7b+3

3a=6b+3

a=2b+1

2b=a-1

Учитывая, что:

- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число

- число AB должно быть четным, то проверять нечетные b нет смысла

- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4

b=0: a=2*0+1=1 - не может быть a+b=1<4

b=2: a=2*2+1=5, число 52

b=4: a=2*4+1=9, число 94

При b=6 и более а=2*6+1=13 и более - не соответствует цифре.

ОТВЕТ: 2 числа

 

7/Задание № 3:

Сколько корней имеет уравнение: |x+2+|−x−4||−8=x?

|x+2+|−x−4||−8=x

|x+2+|x+4||−8=x

\left \{&#10;{{|x+2+x+4|-8=x,x \geq -4} \atop {|x+2-x-4|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{|2x+6|-8=x,x \geq -4} \atop {|-2|-8=x,x\ \textless \ -4}} \right. \\&#10;\left \{ {{ \left \{ {{2x+6-8=x,x \geq -3} \atop {-2x-6-8=x,-4 \leq x \&#10;\textless \ -3}} \right. } \atop {2-8=x,x\ \textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{2x-2=x,x \geq -3} \atop {-2x-14=x,-4 \leq x \ \textless \ -3}} \right. }&#10;\atop {2-8=x,x\ \textless \ -4}} \right. \\ \left \{ {{ \left \{ {{x=2,x \geq&#10;-3} \atop {3x=-14,-4 \leq x \ \textless \ -3}} \right. } \atop {x=-6,x\&#10;\textless \ -4}} \right.

\left \{ {{ \left \{&#10;{{x=2,x \geq -3} \atop {x=-14/3,-4 \leq x \ \textless \ -3}} \right. } \atop&#10;{x=-6,x\ \textless \ -4}} \right

Условию раскрытия моделей соответствуют только первый и третий корни 2 и -6.

ОТВЕТ: 2 корня

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота