Решите Из пункта А в пункт Б, расстояние между которыми 20 км, вышел пешеход. Через 1 час навстречу ему из пункта Б вышел второй пешеход и встретились с ним через 1 час после своего выхода Найдите скорость пешехода, если скорость первого на 2 км/ч больше скорости второго
t=120:X
Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25).
Можем составить уравнение:
120:Х =120:1,2Х + 0,25
Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение:
144 = 120 + 0,3Х
-0,3Х = 120 - 144
-0,3Х = - 24
0,3Х = 24
Х = 24 : 0,3
Х = 80 (км\час, первоначальная скорость мотоциклиста).
ПРОВЕРКА:
120:80=1,5 (часа)
120:96+0,25=1,5(часа).
Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить.
Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости.
Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости.
Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости.
Для этого составляем определитель:
| x-(-3) 4-(-3) -1-(-3) |
| y-2 -1-2 5-2 | = 0
| z-1 2-1 -3-1 |
| x+3 7 2 |
| y-2 -3 3 | = 0
| z-1 1 -4 |
Раскрываем определитель по первому столбцу:
(x+3) × |-3 3| - (y-2) × |7 2| + (z-1) × |7 2| = 0
|1 -4| |1 -4| |-3 3|
(x+3) × (-3×(-4)-1×3) - (y-2) × (7×(-4)-1×2) + (z-1) × (7×3-(-3)×2) = 0
(x+3) × (12-3) - (y-2) × (-28-2) + (z-1) × (21-(-6) = 0
(x+3) × 9 - (y-2) × (-30) + (z-1) × 27 = 0
9(x+3) +30(y-2) + 27(z-1) = 0
3(x+3) +10(y-2) + 9(z-1) = 0
3x + 9 + 10y - 20 + 9z - 9 = 0
3x + 10y + 9z - 20 = 0 -- искомое уравнение плоскости