До момента начала движения мотоциклиста автомобиль проехал x*t км, по формуле: V=S/t, где V - скорость, S - путь, t - время, следовательно S=V*t, по условию задачи это x*t мотоциклисту потребовалось времени до встречи t мот= d/y, где по условию задачи d - путь мотоциклиста до встречи, а у - скорость смотри формулу V=S/t => t+S/V Общее расстояние между пунктами M и N складывается из трех частей: путь автомобиля до момента движения мотоциклиста, он нам известен x*t путь мотоциклиста до встречи, по условию это d путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T, где V это скорость автомобиля, по условию - x T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y, т.о. неизвестный отрезок пути равен s=x*d/y общее расстояние между пунктами равно S(MN)=x*t+x*d/y+d
Это круги Эйлера. Вообще сложнейшая тема. Пусть A - множество всех семей, мощность множества N(A)=44 A1 - множество семей, держащих коров, N(A1)=25 A2 - множество семей, держащих овец, N(A2)=28 A3 - множество семей, держащих свнией, N(A3)=26 попарные пересечения множеств A1,A2,A3 A1∩A2 - множество семей, держащих коров и овец, N(A1∩A2)=15 A2∩A2 - множество семей, держащих овец и свиней, N(A2∩A3)=13 A1∩A3 - множество семей, держащих коров и свиней, N(A1∩A3)=x пересечение множеств A1,A2,A3 A1∩A2∩A3 - множество семей, держащих коров, овец и свиней, N(A1∩A2∩A3)=5 По методу включения-исключения N(A)=N(A1)+N(A2)+N(A3)-N(A1∩A2)-N(A2∩A3)-N(A1∩A3)+N(A1∩A2∩A3)= =25+28+26-15-13-x+5=44 Отсюда x=12, N(A1∩A3)=12 семей, держащих коров и свиней
x*t км,
по формуле: V=S/t, где V - скорость, S - путь, t - время,
следовательно S=V*t, по условию задачи это x*t
мотоциклисту потребовалось времени до встречи t мот= d/y,
где по условию задачи d - путь мотоциклиста до встречи, а у - скорость
смотри формулу V=S/t => t+S/V
Общее расстояние между пунктами M и N складывается из трех частей:
путь автомобиля до момента движения мотоциклиста, он нам известен x*t
путь мотоциклиста до встречи, по условию это d
путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T,
где V это скорость автомобиля, по условию - x
T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y,
т.о. неизвестный отрезок пути равен s=x*d/y
общее расстояние между пунктами равно
S(MN)=x*t+x*d/y+d
Пусть
A - множество всех семей, мощность множества N(A)=44
A1 - множество семей, держащих коров, N(A1)=25
A2 - множество семей, держащих овец, N(A2)=28
A3 - множество семей, держащих свнией, N(A3)=26
попарные пересечения множеств A1,A2,A3
A1∩A2 - множество семей, держащих коров и овец, N(A1∩A2)=15
A2∩A2 - множество семей, держащих овец и свиней, N(A2∩A3)=13
A1∩A3 - множество семей, держащих коров и свиней, N(A1∩A3)=x
пересечение множеств A1,A2,A3
A1∩A2∩A3 - множество семей, держащих коров, овец и свиней, N(A1∩A2∩A3)=5
По методу включения-исключения
N(A)=N(A1)+N(A2)+N(A3)-N(A1∩A2)-N(A2∩A3)-N(A1∩A3)+N(A1∩A2∩A3)=
=25+28+26-15-13-x+5=44
Отсюда x=12, N(A1∩A3)=12 семей, держащих коров и свиней