Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
Пусть длина окружности меньшего колеса это х м,
Тогда длина окружности большего колеса это (х+1) м
Количество оборотов меньшего колеса (y+20)
Количество оборотов меньшего колеса y
Решение:
Составляем систему уравнений:
x(y+20)=175 и (x+1)y=175
xy+20x=175 и xy+y=175
Из первого уравнения вычитаем второе: 20х=y
Подставляем полученное значение y во второе уравнение: x*20x+20x=175
20x^2+20x-175=0
x^2+x-8,75=0
D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36
x=2,5 (м) - длина окружности меньшего колеса
х+1=2,5+1=3,5 (м) - длина окружности большего колеса
ответ: 2,5м и 3,5м