Плот плывет со скоростью течения реки , следовательно:
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки
ответ: 25 км/ч скорость лодки в неподвижной воде.
Объяснение:
Производная по определению - предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует.
Δy = f(x+Δx) - f(x) = √(1+2(x+Δx)) - √(1+2x) = √(1+2x+2Δx) - √(1+2x)Преобразуем выражение, домножив числитель и знаменатель на сопряженное выражение:(√(1+2x+2Δx) - √(1+2x))(√(1+2x+2Δx) + √(1+2x))/(√(1+2x+2Δx) + √(1+2x)) = (1+2x+2Δx - 1 -2x)/(√(1+2x+2Δx) + √(1+2x))= (2Δx)/(√(1+2x+2Δx) + √(1+2x))Δy/Δx = 2/(√(1+2x+2Δx) + √(1+2x))limΔx->0 (2/(√(1+2x+2Δx) + √(1+2x)) = 2/(√(1+2x) + √(1+2x)) = 2/(2√(1+2x) = 1/√(1+2x)ответ: y' = 1/√(1+2x)
Плот плывет со скоростью течения реки , следовательно:
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Расстояние - 60 км
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки
ответ: 25 км/ч скорость лодки в неподвижной воде.
Объяснение:
Производная по определению - предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует.
Δy = f(x+Δx) - f(x) = √(1+2(x+Δx)) - √(1+2x) = √(1+2x+2Δx) - √(1+2x)
Преобразуем выражение, домножив числитель и знаменатель на сопряженное выражение:
(√(1+2x+2Δx) - √(1+2x))(√(1+2x+2Δx) + √(1+2x))/(√(1+2x+2Δx) + √(1+2x)) = (1+2x+2Δx - 1 -2x)/(√(1+2x+2Δx) + √(1+2x))= (2Δx)/(√(1+2x+2Δx) + √(1+2x))
Δy/Δx = 2/(√(1+2x+2Δx) + √(1+2x))
limΔx->0 (2/(√(1+2x+2Δx) + √(1+2x)) = 2/(√(1+2x) + √(1+2x)) = 2/(2√(1+2x) = 1/√(1+2x)
ответ: y' = 1/√(1+2x)