Область определения - это допустимые значения Х -обозначается D(y)/.
а) прямая - Х любое или D(y) - Х∈(-∞; +∞)
б) квадратичная функция - Х∈R или Х∈(-∞; +∞) - Х любое.
в) Если У= 2х/( 5 - х), то все кроме Х = 5 - деление на 0 не допускается - значение Х=5 исключается.
Записывается D(y)- Х∈(-∞;5)∪ (5;+∞)
Внимание: Х=5 не может быть - обозначаем круглой скобкой.
г) Произведение двух чисел. Х = любое.
д) У = 1/х² +1 - Все кроме Х=0 - деление на 0.
Х ∈ (-∞;0)∪(0;+∞)
е) Квадратный корень не может быть из отрицательного числа. Х ≥0.
D(y) - X∈[0;+∞).
Внимание: значение Х=0 может быть - в записи квадратная скобка.
Объяснение:
решается по формуле d=b²-4ac
a b c
3x²+x-30=0
D=1²-4·3· (-30)=1+360=361 , D больше 0 значит имеет 2 корня
x 1=-b+√D÷(2a) x2=-b-√D÷(2a)
∧ 2a в знаменатель ∧ 2a в знаменатель
x1= -1+√361÷(2·3) x2=-1-√361÷(2·3)
x1=-1+19 ÷6 x2= -1-19÷6
x1=18÷6 x2=-20÷6 ( сокращаем -20 и 6 )
x1=3 x2=-10÷3
ответ : x1=3 ; x2=-10÷3
Область определения - это допустимые значения Х -обозначается D(y)/.
а) прямая - Х любое или D(y) - Х∈(-∞; +∞)
б) квадратичная функция - Х∈R или Х∈(-∞; +∞) - Х любое.
в) Если У= 2х/( 5 - х), то все кроме Х = 5 - деление на 0 не допускается - значение Х=5 исключается.
Записывается D(y)- Х∈(-∞;5)∪ (5;+∞)
Внимание: Х=5 не может быть - обозначаем круглой скобкой.
г) Произведение двух чисел. Х = любое.
д) У = 1/х² +1 - Все кроме Х=0 - деление на 0.
Х ∈ (-∞;0)∪(0;+∞)
е) Квадратный корень не может быть из отрицательного числа. Х ≥0.
D(y) - X∈[0;+∞).
Внимание: значение Х=0 может быть - в записи квадратная скобка.
Объяснение: