1) Дана функция y= -x^3-3x^2+4.Её производная равна y' = -3x² - 6x = -3x(x + 2).Приравняем её нулю: -3x(x + 2) = 0. Находим 2 критические точки:х = 0 и х = -2.Определяем их свойства по изменению знака производной.х = -3 -2 -1 0 1y' = -9 0 3 0 -9 .В точке х = -2 минимум функции, у = 0.В точке х = 0 максимум, у = 4.На промежутках (-∞; -2) и (0; +∞) функция убывает на промежутке (-2; 0) возрастает.Вторая производная равна y'' = -6x - 6 = -6(x + 1).Отсюда определяем точку перегиба х = -1.х = -2 -1 0y'' = 6 0 -6. График выпуклый: (-1; +∞), вогнутый (-∞; -1).Пересечение с осями решается алгебраически:- с осью Оу при х = 0 у = 4.- с осью Ох при у = 0 надо решить кубическое уравнение -x^3-3x^2+4 = 0. Один корень виден: х = 1.Делим -x³ - 3x² + 4 | х - 1-x³ + x² -x² - 4x - 4-4x² + 4-4x² + 4x -4x + 4-4x + 4.Результат -(x² + 4x + 4) = -(х + 2)². Получили 2 точки пересечения: х = 1 и х = -2.График приведен в приложении.2) Возможные случаи состава корней кубического уравнения исчерпываются тремя, описанными ниже. Эти случаи легко различаются с дискриминантаΔ = -4b³d + b²c² - 4ac³ + 18abcd - 27a²d².Итак, возможны только три случая:Если Δ > 0, тогда уравнение имеет три различных вещественных корня.Если Δ < 0, то уравнение имеет один вещественный и пару комплексно сопряжённых корней.Если Δ = 0, тогда хотя бы два корня совпадают.Рассмотрим уравнение -x^3-3x^2+4=0.Его коэффициенты a b c d -1 -3 0 4Определяем дискриминант:-4b^3*d b^2*c^2 -4a*c^3 18abcd -27*a^2*d^2 Дискриминант432 0 0 0
ответ: 1) 5х-у=1
х+3у=5
у=-1+5х
х+3(-1+5х)=5
решаем уравнение: х+3(-1+5х)=5
х-3+15х=5 - 16х-3=5
16х=5+3=8 - х=8|16 - х=1|2
возвращаемся к системе: у=-1+5х получаем у=-1+5*1|2
х=1|2 у=3|2
2) 9х+2у=16
3х-5у=11
х=16|9-2|9у
3(16|9-2|9e)-5у=11
решаем уравнение: 3(16|9-2|9e)-5у=11 16|3-2|3y-5y=11
16|3-17|3y=11 |умножаем на 3 (чтобы убрать дробь)
16-17y=33
-17у=33-16 -17у=17 у=-1
возвращаемся к системе: х=16|9-2|9у получаем х=16|9-2|9*(-1)
х=16|9+2|9 х=2
х=2 у=-1
3) 2х-3(2у+1)=15
3(х+1)=3у=2у-2
убираем в первом уравнении скобки: 2х-6у-3=15 2х=15+6у+3 2х=18+6у (делим на 2) х=9+3у
получаем: х=9+3у
3(9+3у+1)+3у=2у-2
Решаем уравнение: 3(9+3у+1)+3у=2у-2
3(10+3у)+3у=2у-2
30+9у+3у=2у-2 30+12у=2у-2
12у-2у=-2-30 10у=-32 (делим обе стороны на 10) у=-16|5
возвращаемся к системе: х=9+3у получаем х=9+3*(-16|5) получаем х=-3|5 y=-16|5
если стоит этот знак | - то это дробь
1) Дана функция y= -x^3-3x^2+4.Её производная равна y' = -3x² - 6x = -3x(x + 2).Приравняем её нулю: -3x(x + 2) = 0. Находим 2 критические точки:х = 0 и х = -2.Определяем их свойства по изменению знака производной.х = -3 -2 -1 0 1y' = -9 0 3 0 -9 .В точке х = -2 минимум функции, у = 0.В точке х = 0 максимум, у = 4.На промежутках (-∞; -2) и (0; +∞) функция убывает на промежутке (-2; 0) возрастает.Вторая производная равна y'' = -6x - 6 = -6(x + 1).Отсюда определяем точку перегиба х = -1.х = -2 -1 0y'' = 6 0 -6. График выпуклый: (-1; +∞), вогнутый (-∞; -1).Пересечение с осями решается алгебраически:- с осью Оу при х = 0 у = 4.- с осью Ох при у = 0 надо решить кубическое уравнение -x^3-3x^2+4 = 0. Один корень виден: х = 1.Делим -x³ - 3x² + 4 | х - 1-x³ + x² -x² - 4x - 4-4x² + 4-4x² + 4x -4x + 4-4x + 4.Результат -(x² + 4x + 4) = -(х + 2)². Получили 2 точки пересечения: х = 1 и х = -2.График приведен в приложении.2) Возможные случаи состава корней кубического уравнения исчерпываются тремя, описанными ниже. Эти случаи легко различаются с дискриминантаΔ = -4b³d + b²c² - 4ac³ + 18abcd - 27a²d².Итак, возможны только три случая:Если Δ > 0, тогда уравнение имеет три различных вещественных корня.Если Δ < 0, то уравнение имеет один вещественный и пару комплексно сопряжённых корней.Если Δ = 0, тогда хотя бы два корня совпадают.Рассмотрим уравнение -x^3-3x^2+4=0.Его коэффициенты a b c d -1 -3 0 4Определяем дискриминант:-4b^3*d b^2*c^2 -4a*c^3 18abcd -27*a^2*d^2 Дискриминант432 0 0 0
Объяснение: