В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Gavrik2017
Gavrik2017
10.11.2021 12:16 •  Алгебра

Решите методом добавления {4x+5y=11 {6x+8y=15​

Показать ответ
Ответ:
katyakot56806
katyakot56806
08.07.2021 21:36
Уравнение является приведённым (коэффициент при x³ равен 1), поэтому его корни могут быть среди делителей его свободного члена. Таковыми являются числа +1,-1,+2,-2,+4,-4,+5,-5,+10,-10,+20,-20. Подставляя в уравнение число 1, убеждаемся, что оно удовлетворяет уравнению, то есть является его корнем. Разделив многочлен x³-10*x²+29*x-20 на двучлен x-1, получим равенство x³-10*x²+29*x-20=(x-1)*(x²-9*x+20). Квадратное уравнение x²-9*x+20 имеет дискриминант D=9²-4*1*20=1 и корни x1=(9+1)/2=5, x2=(9-1)/2=4. Значит, x²-9*x+20=(x-5)*(x-4) и x³-10*x³-10*x²+29*x-20=(x-1)*(x-5)*(x-4). Отсюда следует, что корнями уравнения являются числа x1=1,x2=4, x3=5. ответ: 1,4,5. 
0,0(0 оценок)
Ответ:
Nastyabro1111
Nastyabro1111
28.10.2022 23:38
Представим выражение в виде |y| + |y - 3x| + |y - (1 - x)|.
Геометрический смысл модуля: |a - b| — расстояние между точками a и b на числовой прямой.

Пусть x — такой, при котором достигается минимум. Обозначим x1 <= x2 <= x3 — значения 0, 3x, 1 - x  в порядке возрастания. Необходимо найти такой y, что сумма расстояний до трёх точек x1, x2, x3 минимальна. Я утверждаю, что минимум будет достигнут, если y = x2.

Действительно, пусть y > x3 >= x2. Сдвинем точку немного влево. Все расстояния уменьшатся, тогда сумма тоже уменьшится. Продолжаем двигать, пока y не сравняется с x3.

Если x3 >= y > x2, тоже сдвинем точку немного левее. Сумма расстояний до точек x2 и x3 постоянна и равна x3 - x2, а расстояние до x1 уменьшится. Продолжаем двигать, пока y не сравняется с x2.

Рассуждая точно так же о движении справа от x2, получаем, что в точке x2 достигается минимум, причём этот минимум равен x3 - x1.

Итак, нам удалось избавиться от y. Нужно решать такую задачу:
Найти минимум выражения f(x) = max(0, 3x, 1 - x) - min(0, 3x, 1 - x).

Перебираем случаи. 

1) 3x — максимум. Тогда 3x >= 0, 3x >= 1 - x.
Первое неравенство: x >= 0
Второе неравенство: 4x >= 1; x >= 1/4.
Итог: так будет при x >= 1/4.
а) 0 — минимум. 0 <= 1 - x, x <= 1. Так будет при x из отрезка [1/4, 1].
f(x) = 3x - 0 = 3x — возрастающая функция, минимум достигается в левом конце отрезка. min = f(1/4) = 3 * 1/4 = 3/4
б) 1 - x — минимум. Так будет при x >= 1.
f(x) = 3x - (1 - x) = 4x - 1 — возрастает, минимум достигается в x = 1, min = f(1) = 3.

2) 1 - x — максимум. (1 - x >= 3x, 1 - x >= 0. Тогда x <= 1/4)
а) 0 — минимум (0 <= 3x, всё это выполнено, если x в отрезке [0, 1/4])
f(x) = 1 - x - 0 = 1 - x — убывающая функция, минимум в правом конце отрезка.
min = f(1/4) = 1 - 1/4 = 3/4.
б) 3x — минимум (x <= 0).
f(x) = 1 - x - 3x = 1 - 4x — убывающая функция, минимум в правом конце отрезка.
min = f(0) = 1.

3) 0 — максимум. Ничего интересного не будет, два случая выше уже покрыли все возможные x.

Выбираем из четырёх значений наименьшее, это 3/4.

ответ. 3/4
Найдите наименьшее значение выражения |y|+|3x−y|+|x+y−1|, где х и у - произвольные действительные чи
Найдите наименьшее значение выражения |y|+|3x−y|+|x+y−1|, где х и у - произвольные действительные чи
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота