Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
у = kx+b
A(5; 3)
B(-3; -1)
Подставим координаты точек А и В в уравнение прямой вместо х и у, но точек две, поэтому уравнений получим тоже два с двумя неизвестными k и b
Составим систему уравнений и решим её:
{5k+b=3
{-3k+b=-1
вычтем из верхнего уравнения нижнее, получим
8k+0=4
k = 2
подставим k=2 в любое уравнение системы, например, в верхнее, получим:
5*2 + b =3
10+b = 3
b = 7
Запишем уравнение прямой:
у = 2х+7, которая проходит через данные точки А и В.
Далее, просили уравнение прямой, которая
1) параллельная данной, а значит её коэффициент k одинаковые, т е k = 2 и
2) пересекает ось абсцисс в точке (-10; 0)
0 = 2*(-10) + b
0 = -20 + b
b = 20
y = kx+b
k= 2, b= 20
y = 2x+20 - искомая формула прямой
Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
Ряд распределения:
0 1 2 3 4 5
0,3125 0,15625 0,3125 0,3125 0,15625 0,03125
Проверка. Сумма всех вероятностей равна 1.