23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Я пропоную такий б.
Спочатку число ділять на 4 з остачею 3.
Числа, кратні 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 (таблиця множення до 10)
Додамо до кожного з чисел 3: 7, 11, 15, 19, 23, 27, 31, 35, 39, 43.
Тепер те ж зробимо з числом 5 та остачею 2.
Числа, кратні 5: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.
Додамо до кожного з чисел 2: 7, 12, 17, 22, 27, 32, 37, 42, 47, 52.
Маємо два набори чисел:
7, 11, 15, 19, 23, 27, 31, 35, 39, 43.
7, 12, 17, 22, 27, 32, 37, 42, 47, 52.
Спільні: 7 та 27.
Ділення на 7 не дасть остачі, так як 7 менше 20. Залишається 27.
27/20 = 1 (остача 7)
Остача 7.