В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Милкович11
Милкович11
05.06.2021 18:20 •  Алгебра

решите, мне именно сейчас нужен ответ


решите, мне именно сейчас нужен ответ

Показать ответ
Ответ:
efanovakatena
efanovakatena
26.03.2021 00:11

Построим единичную окружность от начала координат, то есть радиус будет равен единице, и любой радиус-вектор соответственно. Построим треугольник, такой, что его гипотенуза - радиус. один из катетов лежит на оси абсцисс, а другой параллелен оси ординат. Тогда длина противолежащего катета равна координате y точки окружности, находящейся на радиусе, а длина прилежащего - координате x . Угол между гипотенузой и осью абсцисс обозначим за α. Как известно, синусом называется отношение противолежащего катета к гипотенузе, а косинусом называется отношение прилежащего катета к гипотенузе. Как уже было сказано, противолежащий катет равен y, а прилежащий равен x. Тогда sinα = y/1 (гипотенуза равна единице) = y, а cosα = x/1 = x. чтд

Очевидно, что если радиус - любое число, кроме единицы - равенства не будет.

Другой менее правильный. Известная формула расстояния между двумя точками:

d = \sqrt{(x_{1} - x_{2})^2 + (y_{1} - y_{2})^2}

где x1, y1 - соответствующие координаты первой точки, x2,y2 - координаты второй точки.

На самом деле, это всего лишь теорема Пифагора, здесь d - гипотенуза прямоугольного треугольника, а если вычесть из кооординаты начала (x1 или y1) координату конца (x2 или y2), получится длина катета. Квадрат суммы длин катетов равен квадрату длины гипотенузы. Это работает для любых двух точек. Но синус и косинус равны координатам точки только на единичной окружности.

Если одна из точек будет лежать на краю окружности, а вторая будет началом координат, то x2 = y2 = 0, и тогда формула будет иметь другой вид:

d = \sqrt{(x_{1})^2 + (y_{1})^2}

Нетрудно догадаться, что расстояние от центра окружности до ее края называется радиусом. В данном случае радиус равен 1, поэтому:

1 = \sqrt{(x_{1})^2 + (y_{1})^2}

Это уравнение можно возвести в квадрат, так как обе его части неотрицательны:

1 = (x_{1})^2 + (y_{1})^2

Здесь, очевидно, спряталось основное тригонометрическое тождество. 1 = (sinx)^2 + (cosx)^2

0,0(0 оценок)
Ответ:
KceniaZyikova
KceniaZyikova
26.03.2021 00:11

Построим единичную окружность от начала координат, то есть радиус будет равен единице, и любой радиус-вектор соответственно. Построим треугольник, такой, что его гипотенуза - радиус. один из катетов лежит на оси абсцисс, а другой параллелен оси ординат. Тогда длина противолежащего катета равна координате y точки окружности, находящейся на радиусе, а длина прилежащего - координате x . Угол между гипотенузой и осью абсцисс обозначим за α. Как известно, синусом называется отношение противолежащего катета к гипотенузе, а косинусом называется отношение прилежащего катета к гипотенузе. Как уже было сказано, противолежащий катет равен y, а прилежащий равен x. Тогда sinα = y/1 (гипотенуза равна единице) = y, а cosα = x/1 = x. чтд

Очевидно, что если радиус - любое число, кроме единицы - равенства не будет.

Другой менее правильный. Известная формула расстояния между двумя точками:

d = \sqrt{(x_{1} - x_{2})^2 + (y_{1} - y_{2})^2}

где x1, y1 - соответствующие координаты первой точки, x2,y2 - координаты второй точки.

На самом деле, это всего лишь теорема Пифагора, здесь d - гипотенуза прямоугольного треугольника, а если вычесть из кооординаты начала (x1 или y1) координату конца (x2 или y2), получится длина катета. Квадрат суммы длин катетов равен квадрату длины гипотенузы. Это работает для любых двух точек. Но синус и косинус равны координатам точки только на единичной окружности.

Если одна из точек будет лежать на краю окружности, а вторая будет началом координат, то x2 = y2 = 0, и тогда формула будет иметь другой вид:

d = \sqrt{(x_{1})^2 + (y_{1})^2}

Нетрудно догадаться, что расстояние от центра окружности до ее края называется радиусом. В данном случае радиус равен 1, поэтому:

1 = \sqrt{(x_{1})^2 + (y_{1})^2}

Это уравнение можно возвести в квадрат, так как обе его части неотрицательны:

1 = (x_{1})^2 + (y_{1})^2

Здесь, очевидно, спряталось основное тригонометрическое тождество. 1 = (sinx)^2 + (cosx)^2

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота