1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168
кр-03. вариант 1. ответы:
№ 1. 1) 3х(х3 – 4х + 6) = 3x4 – 12x2 + 18x; 2) (х – 3)(2х + 1) = 2x2 + x – 6x – 3;
3) (4а – 7b)(5а + 6b) = 20a2 + 24ab – 35ab – 42b2 = 20a2 – 11ab – 42b2;
4) (у + 2)(у2 + у – 8) = y3 + y2 – 8y + 2y2 + 2y – 16 = y3 + 3y2 – 6y – 16
№ 2. 1) 5a² – 20ab = 5a(a – 4b) 2) 7x³ – 14x⁵ = 7x³(1 – 2x²)
3) 3a – 3b + ax – bx = (3a – 3b) + (ax – bx) = 3(a – b) + x(a + b) = (3 + x)(a² – b²)
№ 3. 4x(x + 3) = 0 ⇒ 1) x₁ = 0 2) x₂ = –3
№ 4. 5a2 – 21
№ 5. x = 5/4
№ 6. (3y +1)∙(6x – 8). подставили х, у, получили ответ: 4,4
№ 7. (2⁴)⁵ – (2³)⁶ = 2²⁰ – 2¹⁸ = 2¹⁸(2² – 1) = 2¹⁸(4 – 1) = 2¹⁸ ∙3.
значит кратно 3, так как в произведении есть множитель 3.
№ 8. (x + 3)(x + 5)
кр-03. вариант 2. ответы:
№ 1. 1) 5a(a4 – 6a² + 3) = 5a5 – 30a³ + 15a
2) (x + 4)(3x – 2) = 3x² – 2x + 12x – 8 = 3x² + 10x – 8
3) (6m + 5n)(7m – 3n) = 42m² – 18mn + 35mn – 15n² = 42m² + 17mn – 15n²
4) (x + 5)(x² + x – 6) = x³ + x² – 6x + 5x² + 5x – 30 = x³ + 6x² – x – 30
№ 2. 1) 18xy – 6x² = 6x(3y – x) 2) 15a6 – 3a⁴ = 3a⁴(5a² – 1)
3) 4x – 4y + cx – cy = x(4 + c) – y(4 + c) = (х – у)(4 + с)
№ 3. 3х(х + 3) = 0 ⇒ 1) x₁ = 0 2) x₂ = –3
№ 4. 13b² + 10(2b + 3)
№ 5. x = 33/5
№ 6. (8a – 1)(3b + 4). подставили a, b, получили ответ: –1,4
№ 7. 27⁴ – 9⁵ = 3¹² – 3¹⁰ = 3¹⁰(3² – 1) = 3¹⁰(3 – 1)(3 + 1) = 3¹⁰∙2∙4 = 8∙3¹⁰.
значит кратно 8, так как в произведении есть множитель 8.
№ 8. (х – 6)(х – 3)
1)
a) 6x^2-3x=0
3x(2x-1)=0
x=0; x=1/2
б)25x^2=1
x^2=1/25
x=±√1/25
x=1/5;x=-1/5
в)4x^2+7x-2=0
D=49+32=81
x=(-7±√81)/8
x=-2; x=1/4
г)4x^2+20x+25=0
D=400-400=0
X=-20/8
x= -5/2
д)3x^2+2x+1=0
D=4-12=-8<0
x∈∅
е)(x^2+5x)/2-3=0
(x^2+5x)/2=3
x^2+5x=6
x^2+5x-6=0
x=1; x=-6
2) x^4-29x^2+100=0
Замена:t=x^2, t>=0
t^2-29t+100=0
D=841-400=441=21^2
t=25; t =4
⇒x=±√25; x=±√4;
x=-5;x=5;x=-2;x=2
3)(3x^2+7x-6)/(4-9x^2)
Решим отдельно уравнение в числителе
3x^2+7x-6=0
D=49+72=121=11^2
x=-3;
x=2/3
⇒3x^2+7x-6=(x+3)(3x-2)
(x+3)(3x-2)/(2-3x)(2+3x) = -(x+3)/(2+3x)
4) x^2-26x+q=0
По теореме Виета
x1+x2=26
12+x2=26
x2=14
x1*x2=q
14*12=q
q=168
кр-03. вариант 1. ответы:
№ 1. 1) 3х(х3 – 4х + 6) = 3x4 – 12x2 + 18x; 2) (х – 3)(2х + 1) = 2x2 + x – 6x – 3;
3) (4а – 7b)(5а + 6b) = 20a2 + 24ab – 35ab – 42b2 = 20a2 – 11ab – 42b2;
4) (у + 2)(у2 + у – 8) = y3 + y2 – 8y + 2y2 + 2y – 16 = y3 + 3y2 – 6y – 16
№ 2. 1) 5a² – 20ab = 5a(a – 4b) 2) 7x³ – 14x⁵ = 7x³(1 – 2x²)
3) 3a – 3b + ax – bx = (3a – 3b) + (ax – bx) = 3(a – b) + x(a + b) = (3 + x)(a² – b²)
№ 3. 4x(x + 3) = 0 ⇒ 1) x₁ = 0 2) x₂ = –3
№ 4. 5a2 – 21
№ 5. x = 5/4
№ 6. (3y +1)∙(6x – 8). подставили х, у, получили ответ: 4,4
№ 7. (2⁴)⁵ – (2³)⁶ = 2²⁰ – 2¹⁸ = 2¹⁸(2² – 1) = 2¹⁸(4 – 1) = 2¹⁸ ∙3.
значит кратно 3, так как в произведении есть множитель 3.
№ 8. (x + 3)(x + 5)
кр-03. вариант 2. ответы:
№ 1. 1) 5a(a4 – 6a² + 3) = 5a5 – 30a³ + 15a
2) (x + 4)(3x – 2) = 3x² – 2x + 12x – 8 = 3x² + 10x – 8
3) (6m + 5n)(7m – 3n) = 42m² – 18mn + 35mn – 15n² = 42m² + 17mn – 15n²
4) (x + 5)(x² + x – 6) = x³ + x² – 6x + 5x² + 5x – 30 = x³ + 6x² – x – 30
№ 2. 1) 18xy – 6x² = 6x(3y – x) 2) 15a6 – 3a⁴ = 3a⁴(5a² – 1)
3) 4x – 4y + cx – cy = x(4 + c) – y(4 + c) = (х – у)(4 + с)
№ 3. 3х(х + 3) = 0 ⇒ 1) x₁ = 0 2) x₂ = –3
№ 4. 13b² + 10(2b + 3)
№ 5. x = 33/5
№ 6. (8a – 1)(3b + 4). подставили a, b, получили ответ: –1,4
№ 7. 27⁴ – 9⁵ = 3¹² – 3¹⁰ = 3¹⁰(3² – 1) = 3¹⁰(3 – 1)(3 + 1) = 3¹⁰∙2∙4 = 8∙3¹⁰.
значит кратно 8, так как в произведении есть множитель 8.
№ 8. (х – 6)(х – 3)