Возведём обе части в квадрат:
(√(2x-20) + √(x+15))² = 25
Теперь всё раскрываем:
2x - 20 + 2√((2x-20)(x+15)) + x + 15 = 25
Теперь всё кроме корня перенесём вправо с противоположным знаком и вновь возведём в квадрат:
2√((2x-20)(x+15)) = 30 - 3x
4√((2x-20)(x+15))² = (30 - 3x)²
4(2x-20)(x+15) = (30 - 3x)²
4(2x² + 30x - 20x - 300) = 900 - 180x + 9x²
8x² + 120x - 80x - 1200 = 900 - 180x + 9x²
-x² + 220x - 2100 = 0
x² - 220x + 2100 = 0
x1 = 210; x2 = 10
Теперь попытаемся подставнокой проверить, какой корень будет удовлетворять уравнению:
Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
Возведём обе части в квадрат:
(√(2x-20) + √(x+15))² = 25
Теперь всё раскрываем:
2x - 20 + 2√((2x-20)(x+15)) + x + 15 = 25
Теперь всё кроме корня перенесём вправо с противоположным знаком и вновь возведём в квадрат:
2√((2x-20)(x+15)) = 30 - 3x
4√((2x-20)(x+15))² = (30 - 3x)²
4(2x-20)(x+15) = (30 - 3x)²
4(2x² + 30x - 20x - 300) = 900 - 180x + 9x²
8x² + 120x - 80x - 1200 = 900 - 180x + 9x²
-x² + 220x - 2100 = 0
x² - 220x + 2100 = 0
x1 = 210; x2 = 10
Теперь попытаемся подставнокой проверить, какой корень будет удовлетворять уравнению:
Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов: