В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Саша08092005
Саша08092005
01.11.2020 11:00 •  Алгебра

Решите надо сегодня сдать​


Решите надо сегодня сдать​

Показать ответ
Ответ:
Lakers44
Lakers44
23.03.2021 07:43
Решение
Пусть х изделий  бригада должна была изготовить в 1 день по плану
(120/х) дней  -  бригада должна была работать
(х+2) -   изделия  бригада изготовляла фактически в 1 день
120/(х+2)  дней  -  бригада работала фактически.
А так как, по условию задачи, бригада закончила
 работу на 3 дня раньше срока, то составим уравнение: 
120/х -  120/(х+2)=3
120(х+2) - 120х = 3х(х+2)
120x + 240 – 120x – 3x² – 6x = 0
3x² + 6x - 240 = 0   делим на 3
x² + 2x – 80 = 0
D = 4 + 4*1*80 = 324
x₁ = (- 2 – 18)/2 = - 10 < 0 не удовлетворяет условию задачи
x₂ = (- 2 + 18)/2  = 8
8  - изделий бригада рабочих изготовляла в 1 день по плану
ответ: 8 изделий
0,0(0 оценок)
Ответ:
ValeriaAstahova99
ValeriaAstahova99
03.03.2021 07:52

1. -15 ≤ 1-2у ≤ 0

2. 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

Объяснение:

1. Т.к. в линейном выражении 1-2у перед у стоит знак "-", то при вычислении пределов возможных значений нужно либо поменять направление знаков больше (меньше) либо поменять местами подставляемые значения 1/2 и 8.

для 1/2 ≤ у: 1-2у ≤ 0

для у ≤ 8:  1-2у ≥ -15

Тогда: -15 ≤ 1-2у ≤ 0

2. Здесь перед у знак "+", но появилась нелинейная зависимость 4/у, поэтому нужно вычислить производную функции (4/у + у) и приравнять её к нулю, чтобы найти ее экстремум.

(\frac{4}{y} +y)'=-\frac{4}{y^2} +1\\-\frac{4}{y^2} +1=0\\y^2=4\\y_1=2; y_2=-2.

Но так как значение -2 не попадает в наш промежуток по условию, то это значение отбрасываем.

Значит, в точке у=2 имеем экстремум. Определим  его значение:

для у=2: \frac{4}{y} +y=4.

На остальных участках функция либо возрастает, либо убывает. подставим граничные значения из условия:

для у=1/2 : \frac{4}{y} +y=8\frac{1}{2}

для у=8: \frac{4}{y} +y=8\frac{1}{2}.

Т.е. имеем кривую с максимумами 8\frac{1}{2} и минимумом 4.

Тогда 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота