На первое место можно выбрать любую из 11-ти команд на второе -любую из 10-ти оставшихся команд на третье -любую из 9-ти оставшихся команд Выбор и на первое и на второе и на третье место по правилу умножения три вершины - три места, на три места можно разместить три буквы Выложим все предметы в один ряд, добавим к ним 3 разделяющих предмета. Переставим всеми возможными данных одинаковых предметов и3 разделяющих. Каждая такая перестановка определяет один из распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем, – во второй ящик, между вторым и третьим разделителем во третий, предметы расположенные после 3-его разделителя – в 4-ый ящик. По формуле перестановок с повторениями
P(14,3)=С³₁₇=17!/((17-3)!·3!)=15·16·17/6=680
4.
n=20
делятся на 5:
5; 10; 15; 20 - четыре числа
делятся на 3:
3; 6; 9; 12; 15; 18 -шесть чисел
Делящихся на 5 или на 3
9 чисел ( 15 повторяется)
m=9
p=m/n=9/20
6.
Всего 10 цифр на два места их можно разместить четных цифр 5:
0;2;4;6;8
На одно место
любую из пяти цифр, на второе место - любую из пяти цифр
Всего шар в одном, два в другом и три в третьем
1шар можно разместить в любой из трех ящиков - три После этого два шара можно разместить в два оставшихся ящика, два Три шара осталось положить в третий ящик
1.
На первое место можно выбрать любую из 11-ти команд на второе -любую из 10-ти оставшихся команд на третье -любую из 9-ти оставшихся команд Выбор и на первое и на второе и на третье место по правилу умножения три вершины - три места, на три места можно разместить три буквы Выложим все предметы в один ряд, добавим к ним 3 разделяющих предмета. Переставим всеми возможными данных одинаковых предметов и3 разделяющих. Каждая такая перестановка определяет один из распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем, – во второй ящик, между вторым и третьим разделителем во третий, предметы расположенные после 3-его разделителя – в 4-ый ящик. По формуле перестановок с повторениями
P(14,3)=С³₁₇=17!/((17-3)!·3!)=15·16·17/6=680
4.
n=20
делятся на 5:
5; 10; 15; 20 - четыре числа
делятся на 3:
3; 6; 9; 12; 15; 18 -шесть чисел
Делящихся на 5 или на 3
9 чисел ( 15 повторяется)
m=9
p=m/n=9/20
6.
Всего 10 цифр на два места их можно разместить четных цифр 5:
0;2;4;6;8
На одно место
любую из пяти цифр, на второе место - любую из пяти цифр
Всего шар в одном, два в другом и три в третьем
1шар можно разместить в любой из трех ящиков - три После этого два шара можно разместить в два оставшихся ящика, два Три шара осталось положить в третий ящик
(2x - 1)(2x - 1 - 1) = 0
(2x - 1)(2x - 2) = 0
2x - 1 = 0 или 2x - 2 = 0
x = 0,5 или x = 1
ответ: 0,5 и 1
2.
x = 1 - 2y
2(1 - 2y) - y = -8
x = 1 - 2y
2 - 4y - y = -8
x = 1 - 2y
5y = 10
y = 2
x = -3
ответ: (-3; 2)
3.
пусть мест в ряду было - x
тогда рядов было 320/x
стало мест: x + 4
рядов 320/x + 1
(320/x + 1)(x + 4) = 420
320 + x + 1280/x + 4 = 420
x + 1280/x = 96
x² - 96x + 1280 = 0
D = 9216 - 5120 = 4096 = 64²
x1 = (96 - 64)/2 = 16
x2 = (96 + 64)/2 = 80
420 : 84 = 5 (рядов) - первый ответ
420 : 20 = 21 (ряд) - второй ответ
ответ: 21 ряд или 5 рядов (задача имеет два решения)