Запишем условие в таблицу: масса золота %золота масса слитка 1 слиток 0,1x 10% x 2 слиток 0,25y 25% y сплав 3 · 0,2 20 % 3 получим систему уравнений: 0,1x + 0,25y = 0,6 ·20 x + y = 3 · (-2)
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
масса золота %золота масса слитка
1 слиток 0,1x 10% x
2 слиток 0,25y 25% y
сплав 3 · 0,2 20 % 3
получим систему уравнений:
0,1x + 0,25y = 0,6 ·20
x + y = 3 · (-2)
2x + 5y = 12
-2x - 2y = - 6 складываем
3y = 6
x + y = 3
y = 2
x = 1
Высота горы ≈ 0,683 км ≈ 683 м.
Объяснение:
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
4) Тогда в ΔABC сторона AC = x + 0,5 км.
Из ΔABC найти BC можно двумя
По теореме Пифагора:
Высота горы ≈ 0,683 км ≈ 683 м.
По теореме синусов, также из ΔABC.
(смотри расчет в
Высота горы ≈ 0,683 км ≈ 683 м.
Рисунок прилагается.