№1 Применяем ограниченность синуса и косинуса -1≤cosx≤1 Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса -1≤sinx≤1 Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции у=1/(sinx-sin3x) Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0 Найдем при каких х знаменатель равен 0. Решаем уравнение sinx-sin3x=0 Применяем формулу
Так как синус - нечетная функция, то sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z ответ. Область определения: x≠πk, k∈Z x≠(π/4)+(π/2)n, n∈ Z
Применяем ограниченность синуса и косинуса
-1≤cosx≤1
Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса
-1≤sinx≤1
Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции
у=1/(sinx-sin3x)
Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0
Найдем при каких х знаменатель равен 0. Решаем уравнение
sinx-sin3x=0
Применяем формулу
Так как синус - нечетная функция, то
sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z
cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z
ответ. Область определения: x≠πk, k∈Z
x≠(π/4)+(π/2)n, n∈ Z
1. Принимаем за х величину одного из чисел, за у значение другого числа.
2. Составим два уравнения:
(1) х + у = 18; х = 18 - у;
(2) ху = 65;
3. Подставляем значение х = 18 - у из первого уравнения во второе уравнение:
(18 - у)у = 65;
18у - у² = 65;
у² - 18у + 65 = 0;
Первое значение у = (18 + √324 + 4 х 65)/2 = (18 + √64)/2 = (18 + 8)/2 = 13.
Второе значение у = (18 - 8)/2 = 5.
Первое значение х = 18 - 13 = 5.
Второе значение х = 18 - 5 = 13.
ответ: значение одного из чисел 5, другого 13.
Объяснение: