чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
C(0;4)
чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
D(5;12)
12=4²-5×4+4
Поимер равен 0, не принадлежит графику.❌
Е(-2;16)
16=-2²-5×(-2)+4
Пример равен 10, не принадлежит графику.❌
F(1;-12)
-12=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
Объяснение:
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.