Пускай скорость пассажирского поезда будет х км/ч. Тогда скорость товарного поезда будет х-20 км/ч. Время, за которое пассажирский поезд пройдёт 480 км, пусть будет у ч, тогда время товарного поезда будет у+4 ч. Имеем систему уравнений: х×у=480, (х-20)×(у+4)=480. х=480/у, ((480/у)-20)×(у+4)=480, ((480-20у)/у)×(у+4)=480, (480-20у)×(у+4)=480у, 480у+1920-20у^2-80у=480у, -20у^2-80у+1920=0, -у^2-4у+96=0, D=(-4)^2-4×(-1)×96=16+384=400, у1=(4-корень с 400)/(2×(-1))=(4-20)/(-2)=(-16)/(-2)=8, у2=(4+корень с 400)/(2×(-1))=(4+20)/(-2)=24/(-2)=-12. у2=-12 - не может быть ответом задачи, так как время не может быть отрицательным. Значит у=8, х=480/8=60. Имеем: скорость пассажирского поезда равна 60 км/ч, скорость товарно поезда равна 60-20=40 км/ч.
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).