(x-a)(x²-10x+9)=0 (x-a)(x-1)(x-9)=0 x₁=a; x₂=1; x₃=9 - корни уравнения Составим из полученных корней все возможные последовательности: 1) 1, 9, а 2) 1, а, 9 3) а, 1, 9 4) а, 9, 1 5) 9, а, 1 6) 9, 1, а Получено 6 последовательностей. Убираем убывающие (4), (5), (6). Получили три возрастающих последовательности. Известно, что это арифметические прогрессии. Находим значение а в каждой из них: 1) 1, 9, а d=9-1=8 => a=9+8=17 2) 1, a, 9 a=(1+9)/2=10/2=5 3) a, 1, 9 d=9-1=8 a=1-8=-7 Итак, а равны 17, 5 и -7
x²-10x+9=0 Корни уравнения находим по теореме Виета: x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁<x₂)
Переписываем уравнение прямой в виде y=-3*x+4. Отсюда следует, что угловой коэффициент этой прямой k1=-3. Так как касательные к окружности перпендикулярны к данной прямой, то их угловой коэффициент k2=-1/k1=1/3. Будем искать уравнения касательных в виде y-y1=k2*(x-x1) и y2=k2*(x-x2), где x1,x2 и y1,y2 - абсциссы и ординаты точек касания. Запишем уравнение окружности в виде F(x,y)=(x-1)²+(y+3)²-40=0. Эта функция является неявной по отношению к x. Дифференцируя её по x и учитывая при этом, что y также является функцией от x, находим dF/dx=2*(x-1)+2*(y+3)*y'=0. Отсюда производная y'(x)=(1-x)/(y+3). Но y'(x1)=(1-x1)/(y1+3), а y'(x2)=(1-x2)=(y2+3). А так как y'(x1)=y'(x2)=k2=1/3, то отсюда следует система уравнений:
(1-x1)/(y1+3)=1/3 (1-x2))/(y2+3)=1/3
Но так как при этом точки касания принадлежат окружности, то их координаты должны удовлетворять и её уравнению. Поэтому к написанной выше системе добавляются ещё два уравнения:
(x1-1)²+(y1+3)²=40 (x2-1)²+(y2+3)²=40
Решая теперь получившуюся систему из 4-х уравнений, находим x1=-1⇒y1=3 либо x1=3⇒y1=-9. А так как для x2 и y2 уравнения точно такие, как для x1 и y1, то и решения получаются одинаковыми: x2=x1, y2=y1. Так и должно быть, потому что окружность имеет лишь две касательных, перпендикулярных данной прямой - соответственно и точек касания будет лишь две. Составляем теперь уравнения касательных: y-3=1/3*(x+1) и y+9=1/3*(x-3). Эти уравнения приводятся к виду x-3*y+10=0 и x-3*y-30=0. ответ: x-3*y+10=0, x-3*y-30=0.
(x-a)(x-1)(x-9)=0
x₁=a; x₂=1; x₃=9 - корни уравнения
Составим из полученных корней все возможные последовательности:
1) 1, 9, а
2) 1, а, 9
3) а, 1, 9
4) а, 9, 1
5) 9, а, 1
6) 9, 1, а
Получено 6 последовательностей. Убираем убывающие (4), (5), (6).
Получили три возрастающих последовательности. Известно, что это арифметические прогрессии. Находим значение а в каждой из них:
1) 1, 9, а
d=9-1=8 => a=9+8=17
2) 1, a, 9
a=(1+9)/2=10/2=5
3) a, 1, 9
d=9-1=8
a=1-8=-7
Итак, а равны 17, 5 и -7
x²-10x+9=0
Корни уравнения находим по теореме Виета:
x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁<x₂)
(1-x1)/(y1+3)=1/3
(1-x2))/(y2+3)=1/3
Но так как при этом точки касания принадлежат окружности, то их координаты должны удовлетворять и её уравнению. Поэтому к написанной выше системе добавляются ещё два уравнения:
(x1-1)²+(y1+3)²=40
(x2-1)²+(y2+3)²=40
Решая теперь получившуюся систему из 4-х уравнений, находим x1=-1⇒y1=3 либо x1=3⇒y1=-9. А так как для x2 и y2 уравнения точно такие, как для x1 и y1, то и решения получаются одинаковыми: x2=x1, y2=y1. Так и должно быть, потому что окружность имеет лишь две касательных, перпендикулярных данной прямой - соответственно и точек касания будет лишь две. Составляем теперь уравнения касательных: y-3=1/3*(x+1) и y+9=1/3*(x-3). Эти уравнения приводятся к виду x-3*y+10=0 и x-3*y-30=0. ответ: x-3*y+10=0, x-3*y-30=0.