В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
малина106
малина106
21.04.2020 06:36 •  Алгебра

Решите неравенство: 1) х - 4) - r <18-х;
3) 31 + х) - x > 37x-68;
2) х + х 20-х) > 24x - 3;
4) x-x(47 + х) > 19 - 45х.​

Показать ответ
Ответ:
aidarbI4123
aidarbI4123
18.11.2021 20:03

Среднее арифметическое чисел - это частное от деления суммы чисел на число слагаемых.

Размах ряда чисел – это разница между наибольшим числом и наименьшими элементами множества.

Мода - наиболее часто встречающиеся или повторяющиеся элемент множества. Если множество не содержит повторяющихся элементов, то мода равна 0.

Если множество содержит нечетное количество чисел, то медиана — это число, которое является серединой множества чисел. Если множество содержит четное количество чисел, то медиана - это среднее арифметическое для двух чисел, находящихся в середине множества.

а) 58, 60, 49, 35, 51, 42, 65, 40.

Среднее арифметическое:

(58+60+49+35+51+42+65+40)/8=400/8=50

Сортируем по возрастанию: 35, 40, 41, 42, 49, 51, 58, 60.

Размах:

60-35=25

Мода: 0, так как нет повторяющихся чисел.

Количество чисел чётное, то медиана

(42+49)/2=91/2=45,5

б) 21, 25, 19, 13, 25, 29, 21, 27, 30.

Среднее арифметическое:

(21+25+19+13+25+29+21+27+30)/9=210/9=70/3=23 1/3

Сортируем по возрастанию: 13, 19, 21, 21, 25, 25, 27, 29, 30

Размах:

30-13=17

Мода: получается 2 моды 21 и 25.

Количество чисел нечётное, то медиана

*25*

0,0(0 оценок)
Ответ:
ademausag
ademausag
17.08.2021 17:24

Дано:

∆ ABC,

CD — биссектриса и высота.

Доказать:

∆ ABC — равнобедренный.

Проведем анализ задачи.

Какой треугольник — равнобедренный? Треугольник, у которого две стороны равны. Значит, нам нужно доказать, что две стороны ∆ ABC равны: AC=BC.

Равенство сторон вытекает из равенства треугольников. Следовательно, задача сводится к доказательству равенства двух треугольников.

Докажем, что ∆ADC и ∆ BDC равны.

Что нам известно об этих треугольниках?

Поскольку CD — биссектриса ∆ ABC, то она делит угол ACB на два равных угла. Значит, углы ACD и BCD равны.

Так как CD — высота ∆ ABC, то она образует со стороной AB два прямых угла.

Таким образом, у треугольников ADC и BDC уже есть две пары равных углов.

сторона CD — общая.

Три пары равных элементов для доказательства равенства треугольников есть.

Переходим непосредственно к доказательству.

Доказательство:

Рассмотрим ∆ ADC и ∆ BDC.

1) ∠ACD=∠BCD (так как CD — биссектриса треугольника ABC по условию).

2) ∠ADC=∠BDC=90º (так как CD — высота треугольника ABC по условию).

3) Сторона CD — общая.

Следовательно, ∆ ADC = ∆ BDC (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).

Что и требовалось доказать.

Если в треугольнике совпадают биссектрисы и высоты, проведенные к каждой из сторон, то такой треугольник — равносторонний (по доказанному выше, у него каждый две стороны равны между собой, а значит, все три стороны равны).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота