1) Sin x = 1 или Sin x = -1 x = π/2 + πk, k ∈Z x = -π/2 + πn, n ∈Z оба решения совпадают в ответ любое 2)Cos² x = 1/2 Cosx = √2/2 или Cos x = -√2/2 x = +- π/4 +2πk, k∈z x = +- 3π/4 + 2πn , n ∈Z 3) Cos² x - Cos x = 0 Cos x(Cos x -1) = 0 Cos x = 0 или Cos x -1 = 0 x = π/2 + πk , k ∈Z Cos x = 1 x = 2πn , n∈Z 4)tg x = 4Ctgx |·tg x≠0 tg² x = 4 tg x = 2 или tg x = -2 x = +-arctg2 + πk , k∈Z
Воспользуемся логарифмом степени, внесём 2 в подлогарифмическое выражение: log133(x^2-5x)=log133(3x-21)²
Уравняем подлогарифмические выражения: х² - 5х = 9х² - 126х + 441
-8х² +121х -441 = 0
D = 121² - 4·(-8)·(-441) = 14641 - 14112 = 23²
х₁ = 9 х₂ = 49/8
Проверка.
х₁ = 9, log₁₃₃(9² - 5·9) = 2log₁₃₃(3·9 - 21)
log₁₃₃36 = 2log₁₃₃6 - верно
х₂ = 49/8, log₁₃₃( (49/8)² - 5·49/8) = 2log₁₃₃(3·49/8 - 21)
log₁₃₃( 441/64) = 2log₁₃₃(147/8 - 21) - не имеет смысла, так как
147/8 - 21 <0.
ответ: 9
x = π/2 + πk, k ∈Z x = -π/2 + πn, n ∈Z
оба решения совпадают в ответ любое
2)Cos² x = 1/2
Cosx = √2/2 или Cos x = -√2/2
x = +- π/4 +2πk, k∈z x = +- 3π/4 + 2πn , n ∈Z
3) Cos² x - Cos x = 0
Cos x(Cos x -1) = 0
Cos x = 0 или Cos x -1 = 0
x = π/2 + πk , k ∈Z Cos x = 1
x = 2πn , n∈Z
4)tg x = 4Ctgx |·tg x≠0
tg² x = 4
tg x = 2 или tg x = -2
x = +-arctg2 + πk , k∈Z