Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77. Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115 115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115 114-2=112 дробей несократимы
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
6160 2 (6160 : 2 = 3080)
3080 2 (3080 : 2 = 1540)
1540 2 (1540 : 2 = 770)
770 2 (770 : 2 = 385)
385 5 (385 : 5 = 77)
77 7 (77 : 7 = 11)
11 11 (11 : 11 = 1)
1
6160 = 2 · 2 · 2 · 2 · 5 · 7 · 11
Надо, чтобы некоторые сомножители сократились. Если в знаменателе останется 7 и 11, то дробь будет бесконечной, значит числитель должен делится на 77.
Т.е. числитель 77*х, где х -целое число, больше 1, но меньше 6160/77=80, т.е. таких дробей будет 79.
2. Всего правильных дробей 114-1/115,2/115...114/115
115 разложим на простые множители 115 = 5 · 23, значит две дроби сократимые - 5/115 и 23/115
114-2=112 дробей несократимы