Изначальная стоимость: 27000000₽; Стоимость до торгов: ?, на 2.5% > изнач.; Цена продажи: ?, на 2.5% < до торгов;
Поскольку изначально было 27000000₽, а стоимость до торгов на 2.5% >, чем 27000000₽, то: 2.5% от изнач. с. = 27000000:1000*25; 2.5% от изнач. с. = 27000 * 25; 2.5% от изнач. с. = 670000₽;
Значит, стоимость до торгов = 27000000 + 670000 = 27670000₽; 2.5% от ст до торгов = 27670000 : 1000 * 25; 2.5% от ст до торгов = 691750₽;
Цена продажи = 27670000 - 691750; Цена продажи = 26978250₽ ответ: Они продали квартиру за 26978250₽
Стоимость до торгов: ?, на 2.5% > изнач.;
Цена продажи: ?, на 2.5% < до торгов;
Поскольку изначально было 27000000₽, а стоимость до торгов на 2.5% >, чем 27000000₽, то:
2.5% от изнач. с. = 27000000:1000*25;
2.5% от изнач. с. = 27000 * 25;
2.5% от изнач. с. = 670000₽;
Значит, стоимость до торгов = 27000000 + 670000 = 27670000₽;
2.5% от ст до торгов = 27670000 : 1000 * 25;
2.5% от ст до торгов = 691750₽;
Цена продажи = 27670000 - 691750;
Цена продажи = 26978250₽
ответ: Они продали квартиру за 26978250₽
1) Выделяем полные квадраты:
для y: (y²+2*7y + 72) -1*72 = (y+7)²-49
Преобразуем исходное уравнение:
(y+7)² = 6x - 0
Получили уравнение параболы:
(y - y0)² = 2p(x - x0)
(y+7)² = 2*3(x - 0)
Ветви параболы направлены вправо, вершина расположена в точке (x0, y0), т.е. в точке (0;-7)
Параметр p = -3.
Координаты фокуса: F(-p/2; yo) = (-1,5; -7).
Уравнение директрисы: x = x0 - p/2
x = 0 - 3/2 = -3/2.
2) Выделяем полные квадраты:
для x: (x²-2*1x + 1) -1 = (x-1)²-1
для y: -4(y²+2*3y + 3²2) +4*3² = -4(y+3)²+36
В итоге получаем:
(x-1)²-4(y+3)² = -68
Разделим все выражение на -68
(-1/68)(x - 1)² + (1/17)(y + 3)² = 1.
Параметры кривой.
Данное уравнение определяет гиперболу с центром в точке:
C(1; -3)
и полуосями: a = 2√17, b =√17.
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 68 + 17 = 85
c = √85.
Тогда эксцентриситет будет равен: e = c/a = √85/2√17.
Асимптотами гиперболы будут прямые: y + 3 = (1/2)(x - 1) и
y + 3 = (-1/2)(x - 1).
Директрисами гиперболы будут прямые: +-е/а = +-(√68/√85).