1)Найти координаты точек пересечения прямых с осями координат
а)x−y = −1 преобразуем выражение в уравнение функции:
-у= -1-х
у=1+х
График пересекает ось Ох при у=0.
у=0
0=1+х
-х=1
х= -1
Координаты точки пересечения графиком оси Ох (-1; 0)
График пересекает ось Оу при х=0.
х=0
у=1+х
у=1+0
у=1
Координаты точки пересечения графиком оси Оу (0; 1)
б)2x + y = 4 преобразуем выражение в уравнение функции:
у=4-2х
График пересекает ось Ох при у=0.
у=0
0=4-2х
2х=4
х= 2
Координаты точки пересечения графиком оси Ох (2; 0)
График пересекает ось Оу при х=0.
х=0
у=4-2х
у=4-0
у=4
Координаты точки пересечения графиком оси Оу (0; 4)
2)Найти точку пересечения этих прямых друг с другом.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у=1+х у=4-2х
Таблицы:
х -1 0 1 х -1 0 1
у 0 1 2 у 6 4 2
Согласно графика, координаты точки пересечения (1; 2)
Объяснение:
1)Найти координаты точек пересечения прямых с осями координат
а)x−y = −1 преобразуем выражение в уравнение функции:
-у= -1-х
у=1+х
График пересекает ось Ох при у=0.
у=0
0=1+х
-х=1
х= -1
Координаты точки пересечения графиком оси Ох (-1; 0)
График пересекает ось Оу при х=0.
х=0
у=1+х
у=1+0
у=1
Координаты точки пересечения графиком оси Оу (0; 1)
б)2x + y = 4 преобразуем выражение в уравнение функции:
у=4-2х
График пересекает ось Ох при у=0.
у=0
0=4-2х
2х=4
х= 2
Координаты точки пересечения графиком оси Ох (2; 0)
График пересекает ось Оу при х=0.
х=0
у=4-2х
у=4-0
у=4
Координаты точки пересечения графиком оси Оу (0; 4)
2)Найти точку пересечения этих прямых друг с другом.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у=1+х у=4-2х
Таблицы:
х -1 0 1 х -1 0 1
у 0 1 2 у 6 4 2
Согласно графика, координаты точки пересечения (1; 2)
(Значения таблиц подтверждают это).
D(y)=(∞;5)∪(5;∞)
ДВА промежутка - от минус бесконечности до 5, и от 5 до плюс бесконечности
Объяснение:
ОБЛАСТЬ ОПРЕДЕЛЕНИЯ - это те числа которые просто могут быть решением этого уравнения.
Ну, например, если 4 / 0 (четыре РАЗДЕЛИТЬ на ноль).. этого же НЕЛЬЗЯ делать, значит надо ИСКЛЮЧИТЬ такую возможность в этой дроби.
Вот и ВСЁ.
Вот, когда в нижней части может быть НОЛЬ ?
Да когда мы ПРИРАВНЯЕМ нижнее уравнение к этому самому нулю, и узнаем чего же не должно быть.
|x+1|-6 = 0
И теперь решаем, чего же НЕ ДОЛЖНО случиться.
То есть в модульных скобках ДОЛЖНА получиться ШЕСТЁРКА 6-6=0
|x+1| = 6
Это 5 (пять + 1 = 6)
x+1-6 = 0 ; х=6-1; х=5
Проверяем:
у = 4/|5+1|-6; у=4/ 6-6 ; не может такого быть, на НОЛЬ делить нельзя, то есть НЕ МОЖЕТ быть областью определения.
D(y)=(∞;5)∪(5;∞)
D(y) - это ОБЛАСТЬ определения
∪ - заменяет слово "объеденяет"