|x+3|+|3x-2|=4x+1 Приравняем каждое подмодульное выражение к нулю: x+3=0 => x=-3 3x-2=0 => x=2/3 Отметим эти точки на числовой прямой:
-32/3
Точки разбили числовую ось на 3 промежутка. Рассмотрим все три случая. 1)x<-3 Оба подмодульных выражения отрицательны на данном промежутке, поэтому модули раскроем со сменой знака: -x-3-3x+2= 4x+1 -4x-1=4x+1 -4x-4x=1+1 -8x=2 x=-1/4 - корень не принадлежит рассматриваемому промежутку 2)-3<=x<2/3 Первое подмодульное выржение положительно на этом промежутке, и его мы раскроем без смены знака. Второре - отрицательно, и раскроем его со сменой знака: x+3-3x+2=4x+1 -2x+5=4x+1 -2x-4x=1-5 -6x=-4 x=2/3 -число не принадлежит рассматриваемому промежутку 3)x>=2/3 Все подмодульные выражения положительны на этом промежутке: x+3+3x-2=4x+1 4x+1=4x+1 Это означает, что весь рассматриваемый промежуток будет решением уравнения. ответ: x e [2/3; + беск.)
Приравняем каждое подмодульное выражение к нулю:
x+3=0 => x=-3
3x-2=0 => x=2/3
Отметим эти точки на числовой прямой:
-32/3
Точки разбили числовую ось на 3 промежутка. Рассмотрим все три случая.
1)x<-3
Оба подмодульных выражения отрицательны на данном промежутке, поэтому модули раскроем со сменой знака:
-x-3-3x+2= 4x+1
-4x-1=4x+1
-4x-4x=1+1
-8x=2
x=-1/4 - корень не принадлежит рассматриваемому промежутку
2)-3<=x<2/3
Первое подмодульное выржение положительно на этом промежутке, и его мы раскроем без смены знака. Второре - отрицательно, и раскроем его со сменой знака:
x+3-3x+2=4x+1
-2x+5=4x+1
-2x-4x=1-5
-6x=-4
x=2/3 -число не принадлежит рассматриваемому промежутку
3)x>=2/3
Все подмодульные выражения положительны на этом промежутке:
x+3+3x-2=4x+1
4x+1=4x+1
Это означает, что весь рассматриваемый промежуток будет решением уравнения.
ответ: x e [2/3; + беск.)
Вариант 1(если (n+1) находится в знаменателе)
[(m-n+1)^2 - (m-1+n)^2]/(4m * (n+1)) =[(m-n+1- m+1-n)(m-n+1+ m -1+n)]/(4m*(n+1)) = =[(2- 2n)*2m]/(4m * (n+1)) = [(1- n)*4]/(4 * (n+1)) = (1- n)/(n+1)
при n=корень(2)
(1- n)/(n+1) =(1-корень(2))/(1+корень(2)) = (1-корень(2))^2/[(1+корень(2))(1-корень(2))]=
= (1-2корень(2)+2)/(1-2) = 2корень(2) -3
Вариант 2( если (n+1) не входит в знаменатель дроби)
[(m-n+1)^2 - (m-1+n)^2]/4m * (n+1) =[(m-n+1- m+1-n)(m-n+1+ m -1+n)]/4m * (n+1) = =[(2- 2n)*2m]/4m * (n+1) = [(1- n)*4]/4 * (n+1) = (1- n)(n+1) =1- n^2
при n = корень(2)
1- n^2 = 1-(корень(2))^2 = 1- 2 = -1